

Journal Information

Volume 6(2), 2025

DOI: <https://dx.doi.org/10.4314/eajbcs.v6i2.5S>

Homepage:

<https://journals.hu.edu.et/hu-journals/index.php/eajbcs>

Article History

Received: 02 June, 2025

Accepted: 02 December, 2025

Published Online: 25 December, 2025

How to cite

Gebrehana T.G. and Geleta H.L.(2025). Hilbert Space of Complex-Valued Harmonic Functions in the Unit Disc. *East African Journal of Biophysical and Computational Sciences* Volume 6(2), 2025, 51-56

Open Access

This work is licensed under a Creative Commons Attribution - Non Commercial - No Derivatives 4.0 International License.

1 Introduction

The study of complex-valued harmonic functions on the unit disk $\mathbb{D} = \{z \in \mathbb{C} | z| < 1\}$ has a long, tracing back to the seminal work of (Clunie & Sheil-Small, 1984) who first systematically introduced harmonic mappings of the form $f = h + \bar{g}$, where h and g are analytic in \mathbb{D} . Such functions naturally generalize analytic mappings, and they have been studied extensively in geometric function theory and operator theory; see, for example,

(Dorff & Rolf, 2012; P. Duren, 2004) and the foundational references (Axler et al., 2001; Zhao, 1990).

The Hardy space $H^2(\mathbb{D})$ of analytic functions is a well-established Hilbert space whose power series coefficients belong to $l^2(\mathbb{Z}^+)$; its norm admits several equivalent formulations, and its element enjoys well-known growth and kernel estimates (see Cowen and MacCluer (1995), P. L. Duren (2001), Luery (2013), Romnes (2020), and Shapiro (1993)). Harmonic Hardy spaces $H_h^p(\mathbb{D})$ provide a natural extension where one admits functions of the form $f=h+$, where h and g are

analytic in \mathbb{D} . Many classical results for analytic Hardy spaces extend to these spaces (Shapiro, 1993; Zhao, 1990), but the Hilbert case $H_h^2(\mathbb{D})$ is of particular interest because of its inner product structure, reproducing kernel, and operator theoretic applications.

The purpose of this paper is to revisit $H_h^2(\mathbb{D})$, to establish its Hilbert space structure, and to develop self-contained proofs of several of its fundamental properties: equivalent norms, Littlewood-Paley identity, growth estimates, and reproducing kernels. While these results are classical in harmonic analysis, our aim is to highlight their analogues in the harmonic setting in parallel with the analytic case, and to present proofs that are accessible and unified as shown in the preprint (Gebrehana & Geleta, 2024) or <https://arxiv.org/abs/2410.22045>. The paper is organized as follows. Section 2 defines the space $H_h^2(\mathbb{D})$ and establishes its Hilbert space structure. Section 3 discusses equivalent norms and the Littlewood-Paley identity. Section 4 presents growth estimates and the explicit form of the reproducing kernel. We conclude with remarks on similarities and differences with the analytic case.

2 NORM ON $H_h^2(\mathbb{D})$

In this section, we define a norm on space of complex-valued harmonic functions whose coefficients in the Taylor series representation is square-summable and then show such space is a Hilbert space.

Theorem 2.1 Let f be a complex-valued harmonic function on the unit disc \mathbb{D} given by

Let $f(z) = h(z) + \overline{g(z)}$, where $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ are analytic. Suppose

$$H_h^2(\mathbb{D}) = \left\{ f : \mathbb{D} \rightarrow \mathbb{C} : f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n} \right. \\ \left. \text{with } \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) < \infty \right\}.$$

Then, $\|\cdot\|_{H_h^2(\mathbb{D})} : H_h^2(\mathbb{D}) \rightarrow \mathbb{R}$ defined by

$$\|f\|_{H_h^2(\mathbb{D})} = \left(\sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) \right)^{1/2}$$

is a norm.

Proof:

(i) Since $\sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) \geq 0$, we have $\|f\|_{H_h^2(\mathbb{D})}^2 \geq 0$, and

$$\sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) = 0 \iff a_n = 0, b_n = 0 \iff f = 0.$$

Thus $\|f\|_{H_h^2(\mathbb{D})}^2 = 0$ if and only if $f = 0$.

(ii)

$$\begin{aligned} \|\alpha f\|_{H_h^2(\mathbb{D})}^2 &= \sum_{n=0}^{\infty} (|\alpha a_n|^2 + |\alpha b_n|^2) \\ &= |\alpha|^2 \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) \\ &= |\alpha|^2 \|f\|_{H_h^2(\mathbb{D})}^2. \end{aligned}$$

Thus $\|\alpha f\|_{H_h^2(\mathbb{D})} = |\alpha| \|f\|_{H_h^2(\mathbb{D})}$.

(iii) Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n}$ and $F(z) = \sum_{n=0}^{\infty} A_n z^n + \overline{\sum_{n=0}^{\infty} B_n z^n}$ are in $H_h^2(\mathbb{D})$. Then

$$\begin{aligned} \|f + F\|_{H_h^2(\mathbb{D})}^2 &= \sum_{n=0}^{\infty} (|a_n + A_n|^2 + |b_n + B_n|^2) \\ &= \sum_{n=0}^{\infty} \left[|a_n|^2 + |A_n|^2 + 2\Re(a_n \bar{A}_n) \right. \\ &\quad \left. + |b_n|^2 + |B_n|^2 + 2\Re(b_n \bar{B}_n) \right]. \end{aligned}$$

So, by Cauchy-Schwartz inequality on the field of complex numbers, we have

$$\begin{aligned} \|f + F\|_{H_h^2(\mathbb{D})}^2 &\leq \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) + \sum_{n=0}^{\infty} (|A_n|^2 + |B_n|^2) \\ &\quad + 2 \sqrt{\sum_{n=0}^{\infty} |a_n|^2 \sum_{n=0}^{\infty} |A_n|^2} + 2 \sqrt{\sum_{n=0}^{\infty} |b_n|^2 \sum_{n=0}^{\infty} |B_n|^2} \\ &\leq \|f\|_{H_h^2(\mathbb{D})}^2 + \|F\|_{H_h^2(\mathbb{D})}^2 + 2\|f\|_{H_h^2(\mathbb{D})} \|F\|_{H_h^2(\mathbb{D})}. \end{aligned}$$

From which we obtain,

$$\|f + F\|_{H_h^2(\mathbb{D})} \leq \|f\|_{H_h^2(\mathbb{D})} + \|F\|_{H_h^2(\mathbb{D})}.$$

Therefore, from (i), (ii) and (iii), $\|\cdot\|_{H_h^2(\mathbb{D})}$ is a norm on $H_h^2(\mathbb{D})$.

□

Remark: Any analytic and conjugate analytic functions are harmonic. Since $h(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic, $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is analytic and $\overline{g(z)} = \overline{\sum_{n=0}^{\infty} b_n z^n}$ is conjugate analytic, we have

$$f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n}$$

is harmonic.

Theorem 2.2. Let $H_h^2(\mathbb{D})$ be the space of complex-valued harmonic functions on the unit disc of the form

$$f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n},$$

where h and g are analytic in \mathbb{D} and

$$\sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) < \infty.$$

Then $H_h^2(\mathbb{D})$ is a Hilbert space with respect to the inner product

$$\langle f, F \rangle = \sum_{n=0}^{\infty} (a_n \bar{A}_n + b_n \bar{B}_n),$$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n}$, and $F(z) = \sum_{n=0}^{\infty} A_n z^n + \overline{\sum_{n=0}^{\infty} B_n z^n}$ are in $H_h^2(\mathbb{D})$.

Proof: We define a mapping

$$T : H_h^2(\mathbb{D}) \rightarrow \ell^2(\mathbb{Z}^+) \times \ell^2(\mathbb{Z}^+),$$

as $T(f) = (a_n, b_n)_{n \geq 0}$.

It is immediate that T is linear. Moreover,

$$\|T(f)\|_{\ell^2 \times \ell^2}^2 = \sum_{n=0}^{\infty} |a_n|^2 + \sum_{n=0}^{\infty} |b_n|^2 = \|f\|_{H_h^2(\mathbb{D})}^2.$$

So, T is an isometry. Since every pair of square-summable sequences $(a_n), (b_n)$ defines a function of the form

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n},$$

the map T is onto. Hence, T is a linear isometric isomorphism. Since $\ell^2(\mathbb{Z}^+) \times \ell^2(\mathbb{Z}^+)$ is a Hilbert space, its isometric image $H_h^2(\mathbb{D})$ is also a Hilbert space. \square

After some algebraic manipulation, we obtain

$$\begin{aligned} |f(re^{i\theta})|^2 &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n \bar{a}_m r^{n+m} e^{i(n-m)\theta} \\ &\quad + \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_m b_n r^{m+n} e^{i(n+m)\theta} \\ &\quad + \overline{\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_m b_n r^{m+n} e^{i(n+m)\theta}} \\ &\quad + \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} b_m \bar{b}_n r^{n+m} e^{i(n-m)\theta}. \end{aligned}$$

It is clear that the integral of exponential function $\{e^{i(n-m)\theta}\}_{n=0}^{\infty}$ is 2π when $n = m$ and 0 when $n \neq m$. Multiplying both sides by $\frac{1}{2\pi}$ and integrating with respect to θ from $-\pi$ to π , we get

$$\begin{aligned} &\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta \\ &= \sum_{n=0}^{\infty} |a_n|^2 r^{2n} + \sum_{n=0}^{\infty} |b_n|^2 r^{2n} \\ &\quad + \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} 2\Re(a_n b_m r^{n+m} e^{i(n+m)\theta}) d\theta \\ &= \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n} \\ &\quad + \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{2r^{n+m}}{2\pi} \Re(a_n b_m \int_{-\pi}^{\pi} e^{i(n+m)\theta} d\theta) \\ &= \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n}. \end{aligned}$$

Therefore,

$$M_2^2(f, r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n}.$$

To complete the proof, we need to show $\|f\|_{H_h^2(\mathbb{D})} = \lim_{r \rightarrow 1^-} M_2(f, r)$. From the above equation we have

$$M_2^2(f, r) = \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n} \leq \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) = \|f\|_{H_h^2(\mathbb{D})}^2$$

whenever $f \in H_h^2(\mathbb{D})$ and $0 \leq r < 1$. So $M_2(f, r)$ is bounded by the $H_h^2(\mathbb{D})$ -norm.

It remains to show that whenever $\lim_{r \rightarrow 1^-} M_2^2(f, r) = M < \infty$, then the partial sum of the series $M_2^2(f, r) = \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n}$ are bounded on the unit disc by M^2 :

$$\sum_{n=0}^N (|a_n|^2 + |b_n|^2) r^{2n} \leq \sum_{n=0}^{\infty} (|a_n|^2 + |b_n|^2) r^{2n} \leq M^2.$$

As $r \rightarrow 1^-$, this partial sum converges to functions in $H_h^2(\mathbb{D})$, which must therefore be bounded by M^2 as well. If every partial

$$M_2^2(f, r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta,$$

where $f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n}$ on \mathbb{D} and $0 \leq r < 1$.

Proof: Using polar representation of $f = h + \overline{g}$, we get

$$f(re^{i\theta}) = \sum_{n=0}^{\infty} a_n r^n e^{in\theta} + \overline{\sum_{n=0}^{\infty} b_n r^n e^{in\theta}}.$$

sum of Taylor series representation of functions in $H_h^2(\mathbb{D})$ is bounded on the unit disc by M^2 , then this is also true for the series. This completes the proof.

Corollary 3.2. The space of bounded complex-valued harmonic functions $f = h + \bar{g}$ on $H_h^\infty(\mathbb{D})$ is a subset of $H_h^2(\mathbb{D})$.

Proof: Let $f \in H_h^\infty(\mathbb{D})$. Then $\|f\|_{H_h^\infty(\mathbb{D})} = \sup_{z \in \mathbb{D}} |f(z)|$. Now,

$$\begin{aligned} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} (\sup |f(re^{i\theta})|)^2 d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \|f\|_{H_h^\infty(\mathbb{D})}^2 d\theta \\ &= \|f\|_{H_h^\infty(\mathbb{D})}^2, \end{aligned}$$

which holds true for every $0 < r < 1$. So for any $f \in H_h^\infty(\mathbb{D})$ we get

$$\lim_{r \rightarrow 1^-} M_2^2(f, r) \leq \|f\|_{H_h^\infty(\mathbb{D})}^2.$$

Hence, $f \in H_h^2(\mathbb{D})$. \square

The following theorem is Littlewood-Paley identity theorem for space of complex-valued harmonic functions. It provides another expression for the $H_h^2(\mathbb{D})$ -norm.

Theorem 3.3. For every complex-valued harmonic function $f = h + \bar{g} \in H_h^2(\mathbb{D})$ we have

$$\begin{aligned} \|f\|_{H_h^2(\mathbb{D})}^2 &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA(z), \end{aligned}$$

where dA denotes the normalized measure on \mathbb{D} ; i.e., $dA = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta$.

Proof: We start by considering the right hand side of the equation in Theorem 3.3. Using the polar form of f , we obtain

$$\begin{aligned} &|(h + \bar{g})(0)|^2 + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 2 \int_{-\pi}^{\pi} \frac{1}{\pi} \int_0^1 |(h' + \bar{g}')(re^{i\theta})|^2 \left(\log \frac{1}{r}\right) r dr d\theta. \end{aligned}$$

Interchanging the two integrals (which can be justified by Fubini's theorem), we have

$$\begin{aligned} &|h(0) + \overline{g(0)}|^2 + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 2 \int_0^1 \left(\frac{1}{\pi} \int_{-\pi}^{\pi} |(h' + \bar{g}')(re^{i\theta})|^2 d\theta \right) \left(\log \frac{1}{r}\right) r dr. \end{aligned}$$

Applying simple algebraic manipulations, we obtain

$$\begin{aligned} &|h(0) + \overline{g(0)}|^2 + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 4 \int_0^1 M_2^2(h'(z) + \overline{g'(z)}, r) \left(\log \frac{1}{r}\right) r dr. \end{aligned}$$

Replacing by the Taylor series representation, we get

$$\begin{aligned} &|h(0) + \overline{g(0)}|^2 + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 4 \int_0^1 \sum_{n=1}^{\infty} (n^2 |a_n|^2 + n^2 |b_n|^2) r^{2n-2} \left(\log \frac{1}{r}\right) r dr \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 4 \sum_{n=1}^{\infty} n^2 (|a_n|^2 + |b_n|^2) \int_0^1 r^{2(n-1)} \left(\log \frac{1}{r}\right) r dr \\ &= |h(0) + \overline{g(0)}|^2 \\ &\quad + 4 \sum_{n=1}^{\infty} n^2 (|a_n|^2 + |b_n|^2) \frac{1}{4n^2} \\ &= |h(0) + \overline{g(0)}|^2 + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2) \\ &= \|f\|_{H_h^2(\mathbb{D})}^2. \end{aligned}$$

From which we obtain,

$$|h(0) + \overline{g(0)}|^2 + 2 \int_{\mathbb{D}} |h'(z) + \overline{g'(z)}|^2 \log \frac{1}{|z|} dA = \|f\|_{H_h^2(\mathbb{D})}^2.$$

This completes the proof.

4 GROWTH ESTIMATES AND KERNELS

The analogous growth estimates and reproducing kernels on space of complex-valued harmonic functions in the unit disc can be obtained as follows:-

Theorem 4.1 (Growth estimate). For each $z \in \mathbb{D}$, and $f = h + \bar{g} \in H_h^2(\mathbb{D})$ it holds that $|f(z)| \leq \frac{2\|f\|_{H_h^2(\mathbb{D})}}{\sqrt{1-|z|^2}}$.

Proof: By applying the triangle inequality for the modulus and Cauchy-Schwarz inequality to the complex-valued harmonic function f , for each $z \in \mathbb{D}$, we obtain

$$\begin{aligned} |f(z)| &= \left| \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n} \right| \\ &\leq \sum_{n=0}^{\infty} |a_n| |z|^n + \sum_{n=0}^{\infty} |b_n| |z|^n \\ &\leq \left(\sum_{n=0}^{\infty} |a_n|^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} |z|^{2n} \right)^{\frac{1}{2}} \\ &\quad + \left(\sum_{n=0}^{\infty} |b_n|^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} |z|^{2n} \right)^{\frac{1}{2}} \\ &= \left[\left(\sum_{n=0}^{\infty} |a_n|^2 \right)^{\frac{1}{2}} + \left(\sum_{n=0}^{\infty} |b_n|^2 \right)^{\frac{1}{2}} \right] \left(\sum_{n=0}^{\infty} |z|^{2n} \right)^{\frac{1}{2}} \\ &\leq (\|h\|_{H_h^2(\mathbb{D})} + \|g\|_{H_h^2(\mathbb{D})}) \left(\sum_{n=0}^{\infty} |z|^{2n} \right)^{\frac{1}{2}} \\ &= \frac{\|h\|_{H_h^2(\mathbb{D})} + \|g\|_{H_h^2(\mathbb{D})}}{\sqrt{1-|z|^2}}. \end{aligned}$$

But then, $\|h\|_{H_h^2(\mathbb{D})} \leq \|f\|_{H_h^2(\mathbb{D})}$ and $\|g\|_{H_h^2(\mathbb{D})} \leq \|f\|_{H_h^2(\mathbb{D})}$, which gives

$$|f(z)| \leq \frac{2\|f\|_{H_h^2(\mathbb{D})}}{\sqrt{1-|z|^2}}. \quad \square$$

Theorem 4.2 (Reproducing kernel). Suppose $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is the unit disc in the complex plane and $H_h^2(\mathbb{D})$ the Hilbert space of complex-valued harmonic functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n},$$

with

$$\|f\|_{H_h^2(\mathbb{D})}^2 = \sum_{n=0}^{\infty} |a_n|^2 + \sum_{n=0}^{\infty} |b_n|^2.$$

Then for each $\alpha \in \mathbb{D}$ the evaluation function $f \mapsto f(\alpha)$ is bounded and the reproducing kernel is given by

$$K_{\alpha}(z) = \frac{1}{1-\bar{\alpha}z} + \frac{1}{1-\alpha\bar{z}}, \quad (|\bar{\alpha}z| < 1),$$

satisfying

$$\langle f, K_{\alpha} \rangle = f(\alpha)$$

for all $f \in H_h^2(\mathbb{D})$; moreover this kernel is unique.

Proof: Define $e_n(z) = z^n$ and $h_n(z) = \bar{z}^n$ for $n \geq 0$. Recall that for

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n},$$

$$g(z) = \sum_{n=0}^{\infty} c_n z^n + \overline{\sum_{n=0}^{\infty} d_n z^n},$$

in $H_h^2(\mathbb{D})$ the inner product of f and g is given by,

$$\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \bar{c}_n + \sum_{n=0}^{\infty} b_n \bar{d}_n.$$

This gives $\langle e_n, e_m \rangle = \delta_{nm}$, $\langle h_n, h_m \rangle = \delta_{nm}$ and $\langle e_n, h_m \rangle = 0$ where δ_{nm} represents the Kronecker delta. Thus, $\{e_n\}_{n \geq 0} \cup \{h_n\}_{n \geq 0}$ is an orthonormal basis of $H_h^2(\mathbb{D})$.

Now, by the standard reproducing kernel Hilbert space formula,

$$K_{\alpha}(z) = \sum_{n=0}^{\infty} e_n(z) \overline{e_n(\alpha)} + \sum_{n=0}^{\infty} h_n(z) \overline{h_n(\alpha)}$$

$$= \sum_{n=0}^{\infty} z^n \bar{\alpha}^n + \sum_{n=0}^{\infty} \bar{z}^n \overline{\alpha^n}$$

$$= \sum_{n=0}^{\infty} \bar{\alpha}^n z^n + \sum_{n=0}^{\infty} \alpha^n \bar{z}^n.$$

Each series converges for $|\alpha z| < 1$, giving the closed form

$$K_{\alpha}(z) = \frac{1}{1-\bar{\alpha}z} + \frac{1}{1-\alpha\bar{z}}.$$

To show K_{α} is in $H_h^2(\mathbb{D})$, the coefficient sequences of K_{α} are $(\bar{\alpha}^n)_{n \geq 0}$ and $(\alpha^n)_{n \geq 0}$, so

$$\|K_{\alpha}\|_{H_h^2(\mathbb{D})}^2 = \sum_{n=0}^{\infty} |\bar{\alpha}|^{2n} + \sum_{n=0}^{\infty} |\alpha|^{2n} = \frac{2}{1-|\alpha|^2} < \infty.$$

Hence, K_{α} is in $H_h^2(\mathbb{D})$ and the evaluation is bounded.

For $f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=0}^{\infty} b_n z^n} \in H_h^2(\mathbb{D})$ we have

$$\langle f, K_{\alpha} \rangle = \sum_{n=0}^{\infty} a_n \alpha^n + \sum_{n=0}^{\infty} b_n \bar{\alpha}^n = f(\alpha).$$

So, the reproducing kernel property holds.

Conversely, if for all $\alpha \in \mathbb{D}$ the evaluation $H_h^2(\mathbb{D}) \ni f \mapsto f(\alpha)$ is a bounded linear functional on $H_h^2(\mathbb{D})$, then by Riesz Representation theorem, there exists a function L_{α} in $H_h^2(\mathbb{D})$ with the property,

$$f(\alpha) = \langle f, L_{\alpha} \rangle.$$

If another L_{α} reproduces evaluation, then $\langle f, K_{\alpha} - L_{\alpha} \rangle = 0$ for all $f \in H_h^2(\mathbb{D})$. Taking $f = K_{\alpha} - L_{\alpha}$ we get $\|K_{\alpha} - L_{\alpha}\|_{H_h^2(\mathbb{D})}^2 = 0$. Hence $K_{\alpha} = L_{\alpha}$, which shows the kernel is unique.

5 Conclusion

In summary, we have developed a Hilbert space framework for complex-valued harmonic functions on the unit disc, analogous to the well-established analytic setting. An equivalent norm representation was derived in terms of integral means, providing a natural structure for further analysis. Within this framework, we established a harmonic analogue of the Littlewood–Paley Identity Theorem and derived comparable growth estimates for complex-valued harmonic functions, thereby extending classical results from analytic function theory to the harmonic setting.

Furthermore, we introduced the reproducing kernel associated with this Hilbert space, which plays a central role in functional analysis by enabling evaluation functionals and facilitating the study of bounded linear operators. This kernel provides a powerful tool for analyzing the geometry and operator theory of the space.

These results not only enrich the theory of harmonic function spaces but also open new avenues for research. Potential directions include the study of composition operators, multipliers, and dual spaces, as well as applications in potential theory and approximation theory. The harmonic framework developed here may also have implications in related fields such as signal processing and mathematical physics, where harmonic functions naturally arise.

Acknowledgements:

We would like to thank Addis Ababa University and Adama Science and Technology University, for providing us

opportunities. We sincerely thank the reviewers for their careful evaluation of our manuscript and their constructive comments.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Funding

No funding is received in conducting this research.

References

Axler, S., Bourdon, P., & Wade, R. (2001). *Harmonic function theory* (Vol. 137). Springer Science & Business Media.

Clunie, J., & Sheil-Small, T. (1984). Harmonic univalent functions. *Annales Fennici Mathematici*, 9(1), 3–25.

Cowen, C. C., & MacCluer, B. D. (1995). *Composition operators on spaces of analytic functions* (Vol. 20). CRC Press.

Dorff, M., & Rolf, J. S. (2012). Anamorphosis, mapping problems, and harmonic univalent functions. In *Explorations in complex analysis* (pp. 197–269).

Duren, P. (2004). *Harmonic mappings in the plane* (Vol. 156). Cambridge University Press.

Duren, P. L. (2001). *Univalent functions* (Vol. 259). Springer Science & Business Media.

Gebrehana, T. G., & Geleta, H. L. (2024). Hilbert space of complex-valued harmonic functions in the unit disc. *arXiv preprint*. <https://arxiv.org/abs/2410.22045>

Luery, K. (2013). *Composition operators on hardy spaces of the disk and half-plane* [Doctoral dissertation, University of Florida].

Romnes, H. B. (2020). *Composition operators on the hardy space of dirichlet series* [Master's thesis, NTNU].

Shapiro, J. H. (1993). *Composition operators and classical function theory*. Springer-Verlag.

Zhao, C. (1990). *Harmonic bergman spaces* [Doctoral dissertation, Washington University].