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Abstract
The study investigated an extended version of Hilbert space of analytic functions called
Hilbert space of complex-valued harmonic functions. It is found that functions in Hilbert
space of complex-valued harmonic functions exhibit many properties analogous to its analytic
counterpart such as complex-valued harmonic function analogous of norm, equivalent norms,
reproducing kernels, growth estimates and Littlewood-Paley Identity Theorem. In particular,
the researchers established that several fundamental results known for Hilbert space of
analytic functions naturally extend to this broader harmonic framework. Beyond theoretical
interest, these findings provide new tools for studying operator theory, potential theory, and
approximation processes within the harmonic setting, thereby opening avenues for further
research and applications in related areas of Mathematics and applied sciences.

Keywords: Complex-valued harmonic functions; Growth estimates; Hilbert space; Inner
product; Integral means; Norm; Reproducing kernel.
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1 Introduction

Thestudy of complex-valued harmonic functions on the unit disk
D = {z ∈ C|z| < 1} has a long, tracing back to the seminal
work of (Clunie & Sheil-Small, 1984) who first systematically
introduced harmonic mappings of the form f = h + ḡ, where
h and g are analytic in D. Such functions naturally generalize
analytic mappings, and they have been studied extensively in
geometric function theory and operator theory; see, for example,

(Dorff & Rolf, 2012; P. Duren, 2004) and the foundational
references (Axler et al., 2001; Zhao, 1990).

The Hardy space H2 (D) of analytic functions is a
well-established Hilbert space whose power series coefficients
belong to l2 (Z+); its norm admits several equivalent
formulations, and its element enjoys well-known growth and
kernel estimates (see Cowen and MacCluer (1995), P. L. Duren
(2001), Luery (2013), Romnes (2020), and Shapiro (1993)).
Harmonic Hardy spaces Hp

h (D) provide a natural extension
where one admits functions of the form f=h+, where h and g are
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analytic in D. Many classical results for analytic Hardy spaces
extend to these spaces (Shapiro, 1993; Zhao, 1990), but the
Hilbert case H2

h (D) is of particular interest because of its inner
product structure, reproducing kernel, and operator theoretic
applications.

The purpose of this paper is to revisit H2
h (D), to establish its

Hilbert space structure, and to develop self-contained proofs
of several of its fundamental properties: equivalent norms,
Littlewood-Paley identity, growth estimates, and reproducing
kernels. While these results are classical in harmonic analysis,
our aim is to highlight their analogues in the harmonic setting
in parallel with the analytic case, and to present proofs that are
accessible and unified as shown in the preprint (Gebrehana &
Geleta, 2024) or https://arxiv.org/abs/2410.22045. The paper
is organized as follows. Section 2 defines the space H2

h (D)
and establishes its Hilbert space structure. Section 3 discusses
equivalent norms and the Littlewood-Paley identity. Section
4 presents growth estimates and the explicit form of the
reproducing kernel. We conclude with remarks on similarities
and differences with the analytic case.

2 NORMONH2
h (D)

In this section, we define a norm on space of complex-valued
harmonic functions whose coefficients in the Taylor series
representation is square-summable and then show such space is
a Hilbert space.

Theorem 2.1 Let f be a complex-valued harmonic function on
the unit disc D given by

Let f(z) = h(z) + g(z), where h(z) =
∑∞

n=0 anz
n and

g(z) =
∑∞

n=0 bnz
n are analytic. Suppose

H2
h(D) =

{
f : D → C : f(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn

with
∞∑

n=0

(
|an|2 + |bn|2

)
< ∞

}
.

Then, ‖ · ‖H2
h(D) : H

2
h(D) → R defined by

‖f‖H2
h(D) =

( ∞∑
n=0

(
|an|2 + |bn|2

))1/2

is a norm.

Proof:

(i) Since
∑∞

n=0

(
|an|2 + |bn|2

)
≥ 0, we have ‖f‖2

H2
h(D)

≥ 0,
and
∞∑

n=0

(
|an|2+|bn|2

)
= 0 ⇐⇒ an = 0, bn = 0 ⇐⇒ f = 0.

Thus ‖f‖2
H2

h(D)
= 0 if and only if f = 0.

(ii)

‖αf‖2H2
h(D)

=

∞∑
n=0

(
|αan|2 + |αbn|2

)
= |α|2

∞∑
n=0

(
|an|2 + |bn|2

)
= |α|2‖f‖2H2

h(D)
.

Thus ‖αf‖H2
h(D) = |α|‖f‖H2

h(D).

(iii) Suppose f(z) =
∑∞

n=0 anz
n +

∑∞
n=0 bnz

n and F (z) =∑∞
n=0 Anz

n +
∑∞

n=0 Bnzn are inH2
h(D). Then

‖f + F‖2H2
h(D)

=

∞∑
n=0

(
|an +An|2 + |bn +Bn|2

)
=

∞∑
n=0

[
|an|2 + |An|2 + 2<(anĀn)

+ |bn|2 + |Bn|2 + 2<(bnB̄n)
]
.

So, by Cauchy-Schwartz inequality on the field of complex
numbers, we have

‖f + F‖2H2
h(D)

≤
∞∑

n=0

(
|an|2 + |bn|2

)
+

∞∑
n=0

(
|An|2 + |Bn|2

)
+ 2

√√√√ ∞∑
n=0

|an|2
∞∑

n=0

|An|2 + 2

√√√√ ∞∑
n=0

|bn|2
∞∑

n=0

|Bn|2

≤ ‖f‖2H2
h(D)

+ ‖F‖2H2
h(D)

+ 2‖f‖H2
h(D)‖F‖H2

h(D).

From which we obtain,

‖f + F‖H2
h(D) ≤ ‖f‖H2

h(D) + ‖F‖H2
h(D).

Therefore, from (i), (ii) and (iii), ‖ · ‖H2
h(D) is a norm onH2

h(D).

Remark: Any analytic and conjugate analytic functions are
harmonic. Since h(z) =

∑∞
n=0 anz

n is analytic, g(z) =∑∞
n=0 bnz

n is analytic and g(z) =
∑∞

n=0 bnz
n is conjugate

analytic, we have

f(z) = h(z) + g(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn

is harmonic.

Theorem 2.2. Let H2
h(D) be the space of complex-valued

harmonic functions on the unit disc of the form

f(z) = h(z) + g(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn,

where h and g are analytic in D and

∞∑
n=0

(
|an|2 + |bn|2

)
< ∞.
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ThenH2
h(D) is a Hilbert space with respect to the inner product

〈f, F 〉 =
∞∑

n=0

(
anAn + bnBn

)
,

where f(z) =
∑∞

n=0 anz
n +

∑∞
n=0 bnz

n, and F (z) =∑∞
n=0 Anz

n +
∑∞

n=0 Bnzn are inH2
h(D).

Proof: We define a mapping

T : H2
h(D) → `2(Z+)× `2(Z+),

as T (f) = (an, bn)n≥0.

It is immediate that T is linear. Moreover,

‖T (f)‖2`2×`2 =

∞∑
n=0

|an|2 +
∞∑

n=0

|bn|2 = ‖f‖2H2
h(D)

.

So, T is an isometry. Since every pair of square-summable
sequences (an), (bn) defines a function of the form

f(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn,

the map T is onto. Hence, T is a linear isometric isomorphism.
Since `2(Z+) × `2(Z+) is a Hilbert space, its isometric image
H2

h(D) is also a Hilbert space.

3 EQUIVALENT NORMS

We now consider Complex-valued harmonic functions
analogous of equivalent norm by integral means and
Littlewood-Paley Identity Theorem which were studied in space
of analytic functions.

Theorem 3.1 The norm defined on H2
h(D)(in Theorem 2.1) has

another equivalent representation by integral means which is
denoted byM2

2 (f, r)and defined by

M2
2 (f, r) =

1

2π

∫ π

−π

|f(reiθ)|2 dθ,

where f(z) = h(z) + g(z) =
∑∞

n=0 anz
n +

∑∞
n=0 bnz

n on D
and 0 ≤ r < 1.

Proof: Using polar representation of f = h+ g, we get

f(reiθ) =

∞∑
n=0

anr
neinθ +

∞∑
n=0

bnrneinθ.

After some algebraic manipulation, we obtain

|f(reiθ)|2 =

∞∑
n=0

∞∑
m=0

anāmrn+mei(n−m)θ

+

∞∑
n=0

∞∑
m=0

ambnr
m+nei(n+m)θ

+

∞∑
n=0

∞∑
m=0

ambnrm+nei(n+m)θ

+

∞∑
n=0

∞∑
m=0

bmb̄nr
n+mei(n−m)θ.

It is clear that the integral of exponential function {ei(n−m)θ}∞n=0

is 2π when n = m and 0 when n 6= m. Multiplying both sides
by 1

2π and integrating with respect to θ from−π to π, we get

1

2π

∫ π

−π

|f(reiθ)|2 dθ

=

∞∑
n=0

|an|2r2n +

∞∑
n=0

|bn|2r2n

+
1

2π

∫ π

−π

∞∑
n=0

∞∑
m=0

2<(anbmrn+mei(n+m)θ) dθ

=

∞∑
n=0

(
|an|2 + |bn|2

)
r2n

+

∞∑
n=0

∞∑
m=0

2rn+m

2π
<
(
anbm

∫ π

−π

ei(n+m)θ dθ
)

=

∞∑
n=0

(
|an|2 + |bn|2

)
r2n.

Therefore,

M2
2 (f, r) =

1

2π

∫ π

−π

|f(reiθ)|2 dθ =

∞∑
n=0

(
|an|2 + |bn|2

)
r2n.

To complete the proof, we need to show ‖f‖H2
h(D) =

limr→1− M2(f, r). From the above equation we have

M2
2 (f, r) =

∞∑
n=0

(
|an|2+|bn|2

)
r2n ≤

∞∑
n=0

(
|an|2+|bn|2

)
= ‖f‖2H2

h(D)

whenever f ∈ H2
h(D) and 0 ≤ r < 1. So M2(f, r) is bounded

by theH2
h(D)-norm.

It remains to show thatwhenever limr→1− M2
2 (f, r) = M < ∞,

then the partial sum of the series M2
2 (f, r) =

∑∞
n=0

(
|an|2 +

|bn|2
)
r2n are bounded on the unit disc byM2:

N∑
n=0

(
|an|2 + |bn|2

)
r2n ≤

∞∑
n=0

(
|an|2 + |bn|2

)
r2n ≤ M2.

As r → 1−, this partial sum converges to functions in H2
h(D),

which must therefore be bounded byM2 as well. If every partial
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sum of Taylor series representation of functions in H2
h(D) is

bounded on the unit disc by M2, then this is also true for the
series. This completes the proof.

Corollary 3.2. The space of bounded complex-valued harmonic
functions f = h+ g onH∞

h (D) is a subset ofH2
h(D).

Proof: Let f ∈ H∞
h (D). Then ‖f‖H∞

h (D) = supz∈D |f(z)|.
Now,

1

2π

∫ π

−π

|f(reiθ)|2 dθ ≤ 1

2π

∫ π

−π

(
sup |f(reiθ)|

)2
dθ

=
1

2π

∫ π

−π

‖f‖2H∞
h (D) dθ

= ‖f‖2H∞
h (D),

which holds true for every 0 < r < 1. So for any f ∈ H∞
h (D)

we get
lim

r→1−
M2

2 (f, r) ≤ ‖f‖2H∞
h (D).

Hence, f ∈ H2
h(D).

The following theorem is Littlewood-Paley identity theorem
for space of complex-valued harmonic functions. It provides
another expression for theH2

h(D)-norm.

Theorem 3.3. For every complex-valued harmonic function f =
h+ g ∈ H2

h(D) we have

‖f‖2H2
h(D)

= |h(0) + g(0)|2

+ 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA(z),

where dA denotes the normalized measure on D; i.e., dA =
1
π dx dy = 1

π r dr dθ.

Proof: Westart by considering the right hand side of the equation
inTheorem 3.3. Using the polar form of f , we obtain

|(h+ g)(0)|2 + 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA

= |h(0) + g(0)|2

+ 2

∫ π

−π

1

π

∫ 1

0

|(h′ + g′)(reiθ)|2
(
log

1

r

)
r dr dθ.

Interchanging the two integrals (which can be justified by Fubini’s
theorem), we have

|h(0) + g(0)|2 + 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA

= |h(0) + g(0)|2

+ 2

∫ 1

0

( 1

π

∫ π

−π

|(h′ + g′)(reiθ)|2 dθ
)(

log
1

r

)
r dr.

Applying simple algebraic manipulations, we obtain

|h(0) + g(0)|2 + 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA

= |h(0) + g(0)|2

+ 4

∫ 1

0

M2
2 (h

′(z) + g′(z), r)
(
log

1

r

)
r dr.

Replacing by the Taylor series representation, we get

|h(0) + g(0)|2 + 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA

= |h(0) + g(0)|2

+ 4

∫ 1

0

∞∑
n=1

(
n2|an|2 + n2|bn|2

)
r2n−2

(
log

1

r

)
r dr

= |h(0) + g(0)|2

+ 4

∞∑
n=1

n2
(
|an|2 + |bn|2

) ∫ 1

0

r2(n−1)
(
log

1

r

)
r dr

= |h(0) + g(0)|2

+ 4

∞∑
n=1

n2
(
|an|2 + |bn|2

) 1

4n2

= |h(0) + g(0)|2 +
∞∑

n=1

(
|an|2 + |bn|2

)
= ‖f‖2H2

h(D)
.

From which we obtain,

|h(0) + g(0)|2 + 2

∫
D
|h′(z) + g′(z)|2 log 1

|z|
dA = ‖f‖2H2

h(D)
.

This completes the proof.

4 GROWTH ESTIMATES AND
KERNELS

The analogous growth estimates and reproducing kernels on
space of complex-valued harmonic functions in the unit disc can
be obtained as follows:-

Theorem 4.1 (Growth estimate). For each z ∈ D, and f =

h+ g ∈ H2
h(D) it holds that |f(z)| ≤

2‖f‖
H2

h
(D)√

1−|z|2 .

Proof: By applying the triangle inequality for the modulus
andCauchy-Schwarz inequality to the complex-valued harmonic
function f , for each z ∈ D, we obtain

|f(z)| =
∣∣∣ ∞∑
n=0

anz
n +

∞∑
n=0

bnzn
∣∣∣

≤
∞∑

n=0

|an||z|n +

∞∑
n=0

|bn||z|n

≤
( ∞∑
n=0

|an|2
) 1

2
( ∞∑
n=0

|z|2n
) 1

2

+
( ∞∑
n=0

|bn|2
) 1

2
( ∞∑
n=0

|z|2n
) 1

2

=
[( ∞∑

n=0

|an|2
) 1

2

+
( ∞∑
n=0

|bn|2
) 1

2
]( ∞∑

n=0

|z|2n
) 1

2

≤
(
‖h‖H2

h(D) + ‖g‖H2
h(D)

)( ∞∑
n=0

|z|2n
) 1

2

=
‖h‖H2

h(D) + ‖g‖H2
h(D)√

1− |z|2
.
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But then, ‖h‖H2
h(D) ≤ ‖f‖H2

h(D) and ‖g‖H2
h(D) ≤ ‖f‖H2

h(D),
which gives

|f(z)| ≤
2‖f‖H2

h(D)√
1− |z|2

.

Theorem 4.2 (Reproducing kernel). Suppose D = {z ∈ C :
|z| < 1} is the unit disc in the complex plane and H2

h(D) the
Hilbert space of complex-valued harmonic functions

f(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn,

with

‖f‖2H2
h(D)

=

∞∑
n=0

|an|2 +
∞∑

n=0

|bn|2.

Then for each α ∈ D the evaluation function f 7−→ f(α) is
bounded and the reproducing kernel is given by

Kα(z) =
1

1− ᾱz
+

1

1− αz̄
, (|ᾱz| < 1),

satisfying
〈f,Kα〉 = f(α)

for all f ∈ H2
h(D); moreover this kernel is unique.

Proof: Define en(z) = zn and hn(z) = z̄n for n ≥ 0. Recall
that for

f(z) =

∞∑
n=0

anz
n +

∞∑
n=0

bnzn,

g(z) =
∞∑

n=0

cnz
n +

∞∑
n=0

dnzn,

inH2
h(D) the inner product of f and g is given by,

〈f, g〉 =
∞∑

n=0

anc̄n +

∞∑
n=0

bnd̄n.

This gives 〈en, em〉 = δnm, 〈hn, hm〉 = δnm and 〈en, hm〉 = 0
where δnm represents the Kronecker delta. Thus, {en}n≥0 ∪
{hn}n≥0 is an orthonormal basis ofH2

h(D).

Now, by the standard reproducing kernel Hilbert space formula,

Kα(z) =

∞∑
n=0

en(z)en(α) +

∞∑
n=0

hn(z)hn(α)

=

∞∑
n=0

znᾱn +

∞∑
n=0

z̄nᾱn

=

∞∑
n=0

ᾱnzn +

∞∑
n=0

αnz̄n.

Each series converges for |αz| < 1, giving the closed form

Kα(z) =
1

1− ᾱz
+

1

1− αz̄
.

To show Kα is in H2
h(D), the coefficient sequences of Kα are

(ᾱn)n≥0 and (αn)n≥0, so

‖Kα‖2H2
h(D)

=

∞∑
n=0

|α|2n +

∞∑
n=0

|α|2n =
2

1− |α|2
< ∞.

Hence,Kα is inH2
h(D) and the evaluation is bounded.

For f(z) =
∑∞

n=0 anz
n +

∑∞
n=0 bnz

n ∈ H2
h(D) we have

〈f,Kα〉 =
∞∑

n=0

anα
n +

∞∑
n=0

bnᾱ
n = f(α).

So, the reproducing kernel property holds.

Conversely, if for all α ∈ D the evaluation H2
h(D) 3 f 7−→

f(α) is a bounded linear functional on H2
h(D), then by Riesz

Representation theorem, there exists a function Lα in H2
h(D)

with the property,
f(α) = 〈f, Lα〉.

If anotherLα reproduces evaluation, then 〈f,Kα−Lα〉 = 0 for
all f ∈ H2

h(D). Taking f = Kα−Lα we get ‖Kα−Lα‖2H2
h(D)

=

0. HenceKα = Lα, which shows the kernel is unique.

5 Conclusion

In summary, we have developed a Hilbert space framework for
complex-valued harmonic functions on the unit disc, analogous
to the well-established analytic setting. An equivalent norm
representation was derived in terms of integral means, providing
a natural structure for further analysis. Within this framework,
we established a harmonic analogue of the Littlewood–Paley
Identity Theorem and derived comparable growth estimates for
complex-valued harmonic functions, thereby extending classical
results from analytic function theory to the harmonic setting.

Furthermore, we introduced the reproducing kernel associated
with this Hilbert space, which plays a central role in functional
analysis by enabling evaluation functionals and facilitating the
study of bounded linear operators. This kernel provides a
powerful tool for analyzing the geometry and operator theory of
the space.

These results not only enrich the theory of harmonic function
spaces but also open new avenues for research. Potential
directions include the study of composition operators,
multipliers, and dual spaces, as well as applications in potential
theory and approximation theory. The harmonic framework
developed here may also have implications in related fields such
as signal processing and mathematical physics, where harmonic
functions naturally arise.
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