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Abstract

An integrated approach for soil thickness estimation is developed and evaluated. The method
combines a biharmonic trend model with a stochastic Sequential Gaussian Simulation (SGS)
component. Numerical experiments are first carried out in one dimentional synthetic data
to provide a controlled enviroment for testing the methodology, investigating interpolation
behavior, and determining parameter sensitivity. The approch is then extended to a two
dimensional synthetic domain to see how well it captures spatial variability that is more
representative of real-world applications. In both settings, the large-scale structure of the soil
thickness field is approximated using a biharmonic equation, while the small-scale variability
is represented by SGS applied to the residuals. This decomposition enables the method to
preserve global smoothness imposed by the PDE model while simultaneously reproducing local
heterogeneity through stochastic simulation. The results demonstrate that the hybrid method
reduces prediction error relative to the PDEmodel or ordinary kriging alone, and that it provides
a flexible approach for uncertainity quantification, making it suitable for realistic soil thickness
mapping problems. .

Keywords: Soil thickness; Biharmonic PDE; Sequential Gaussian Simulation; Uncertainty .

1 Introduction

Soil thickness is an important variable in hydrological, ecological,
and geo-engineering applications (Liu et al., 2013; Yan
et al., 2021). Its estimation remains difficult because field
observations are typically sparse, the terrain may vary rapidly,
and measurements often contain noise. A recent study by
Kitterød and Leblois (2021) introduced a Poisson’s equation with

a constant-curvature assumption. Although this formulation
provides a useful representation of large-scale behaviour, the
imposed curvature is restrictive and may not reflect the spatial
variability observed in natural landscapes. Kitterød and Leblois
(2021) assumed that large-scale sediment thickness and bedrock
topography might be modeled as parabolic functions resembling
the U-shaped forms common in glacial landscapes. Solution of
the Poisson’s equations are sensitive to boundary conditions,
which makes it less realistic when boundary information is
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uncertain. Stochastic methods, such as Sequential Gaussian
Simulation (SGS), have been used to represent small-scale
variability and quantify uncertainty. For example, Jamshidi
et al. (2014) applied SGS to investigate soil erodibility at the
catchment scale, demonstrating its ability to reproduce local
heterogeneity and provide multiple realizations for uncertainty
analysis. However, SGS depends on the choice of variogram
model and does not incorporate physical constraints, which
may reduce simulation results outside data clusters. These
considerations motivate a combined approach. PDE-based
methods provide physically consistent large-scale trends but
are limited to account uncertainity, whereas SGS capture local
variability but lack physical structure. A hybrid strategy can take
advantage of both.

The objective of this study is to develop and assess a hybrid
PDE-SGS approach for soil thickness estimation. The large-scale
trend is modeled using a thin-plate biharmonic equation, a
classical fourth-order elliptic PDE widely used for generating
smooth surfaces and plate-bending approximations (Antonietti
et al., 2018; Gazzola et al., 2010; Kumar, 2024; Timoshenko &
Woinowsky-Krieger, 1959). In our formulation, the biharmonic
operator is driven by data-informed load functions, allowing
spatially varying curvature that adapts to the underlying terrain
structure (Brenner & Scott, 2008). Small-scale variability is
represented by applying SGS to the residual field, ensuring that
stochastic fluctuations are consistent with the estimated spatial
covariance model. The method is first tested in a controlled
one-dimensional synthetic example where the exact solution is
known, allowing a direct comparison between the numerical
results and the exact solution. This environment enables
a transparent presentation of the mathematical formulation
and provides a direct means of verifying the finite element
implementation of the biharmonic trend (Beirão da Veiga
et al., 2013; Chinosi & Marini, 2006). Synthetic noise is
introduced to mimic measurement uncertainty and to evaluate
the reliability of the approach under realistic data conditions.
The trend component is represented through a set of biharmonic
basis functions whose coefficients are estimated from the data,
while the SGS component generates multiple realizations that
reproduce small-scale spatial structure. Predictive accuracy and
uncertainty are assessed through resampling strategies, including
leave-one-out cross-validation. The main contributions of this
paper are:

1. construction of the soil-thickness trend using a biharmonic
equation whose load functions are calculated directly from
the observations,

2. incorporation of variability and uncertainty through
Sequential Gaussian Simulation (SGS),

3. demonstration of the method’s behaviour under sparse and
noisy observations, and

4. development of a finite element implementation for the
one-dimensional model.

Below, the general idea is outlined in Section 2, followed by
an example of a one-dimensional solution in Section 3. The
PDE-SGS procedure is presented in Section 4, while the finite

element implementation is summarized in Section 5. Numerical
results are provided in Section 6, and the discussion and
conclusions are given in Sections 7 and 8.

2 Methodology

The method we propose combines PDE-based trend modelling
with stochastic simulations. The proposed approach includes:

1. A PDE trend using the biharmonic operator to capture
large-scale smooth trends in soil thickness.

2. A stochastic simulation component using Sequential
Gaussian Simulation to model small-scale variability and
uncertainty.

The hybrid solution is expressed as:

U(x) = T (x) +R(x), (1)

where T (x) represents the ensemble realization of the trend
obtained by solving a constrained biharmonic equation, and
R(x) represents the stochastic residual simulated using SGS.

3 Mathematics Formulation

We consider the following problem on a closed domainΩ ⊂ Rn:

∆2u = q in Ω (2a)
with boundary conditions:

u = 0 and ∂nu = 0 on ∂ΩD, (2b)
∆u = 0 and ∂n(∆u) = 0 on ∂ΩN. (2c)

The boundary ∂Ω = ∂ΩD ∪ ∂ΩN is divided into a part ∂ΩD for
Dirichlet boundary conditions and another ∂ΩN for Neumann
boundary conditions. The right hand side function q will be
referred to as the load function.

3.1 One-Dimensional Mathematical Formulation

We consider the one-dimensional case as a special instance of the
general n-dimensional formulation in Sec. 3 with n = 1, i.e., the
domain is Ω = [0, L]. In this setting, the biharmonic equation
(2a) - (2c) simplifies to

d4u(x)

dx4
= q(x), x ∈ Ω, (3a)

subject to homogeneous Dirichlet boundary conditions at the
end points:

u(0) = 0, u(L) = 0, (3b)
u′(0) = 0, u′(L) = 0, (3c)
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where the prime (′) denotes differentiation with respect to x. The
load function q(x) is expressed as:

q(x) =

nd∑
i=1

piqi(x), (3d)

where qi(x) are chosen load functions, pi are unknown
coefficients, andnd is the number of basis functions (data points).

3.1.1 Variational (Weak) Formulation

Let V denote the function space that incorporates the essential
(Dirichlet) boundary conditions of the problem:

V = { v ∈ H2(Ω) | v(0) = v(L) = 0, v′(0) = v′(L) = 0 }.

Functions in V therefore satisfy both the prescribed values
and prescribed slopes at the boundary. To derive the weak
formulation, we multiply (3a) by a test function v ∈ V and
integrate over the domain. Applying integration by parts twice
and using the fact that both v and v′ vanish at the boundaries
yields the following weak problem:

Find u ∈ V such that∫
Ω

u′′(x) v′′(x) dx =

∫
Ω

q(x) v(x) dx ∀ v ∈ V. (4)

3.1.2 Discretization

To approximate the solution of the biharmonic (beam) problem,
we employ the finite element method (FEM). The domain [0, L]
is partitioned intoN uniform elements, with mesh points

0 = x0 < x1 < · · · < xN = L,

where h = xi+1 − xi denotes the uniform element length.

3.1.3 Basis functions: cubic Hermite polynomials

Since the Euler-Bernoulli beam equation involves both
displacement and slope as nodal degrees of freedom, each
element requires four degrees of freedom: u(0), u′(0), u(h), and
u′(h). Accordingly, we adopt cubicHermite polynomials as basis
functions. This ensures C1 continuity across elements, which
are standard for fourth-order PDEs. On a reference element of
length h, the beam profile is approximated as

u(x) = Ne
1u

e
1 +Ne

2u
e
2 +Ne

3u
e
3 +Ne

4u
e
4,

where ue
1, u

e
2 are the displacement and slope at the left node, and

ue
3, u

e
4 correspond to the right node. The cubic Hermite shape

functions are given by

Ne
1 = 1− 3

x2

h2
+ 2

x3

h3
, Ne

3 =
x2

h2

(
3− 2

x

h

)
,

Ne
2 = x

(
1− 2

x

h
+

x2

h2

)
, Ne

4 =
x2

h

(x
h
− 1
)
.

The global finite element spaceVh is formed by assembling these
local Hermite basis functions over all elements. Imposing the
clamped boundary conditions u(0) = u(L) = 0 and u′(0) =
u′(L) = 0 sets the corresponding end functions to zero.

3.1.4 Discrete weak form

The approximate solution is expressed as

uh(x) =

2N+1∑
i=0

ciφi(x),

with unknown coefficients ci determined from the discrete weak
form

a(uh, φj) = F (φj), j = 0, 1, . . . , 2N + 1.

This leads to the linear system

KhUh = Qh,

where

(Kh)ij =

∫ L

0

φ′′
i (x)φ

′′
j (x) dx, (Qh)j =

∫ L

0

f(x)φj(x) dx.

Here Kh and Qh denote the stiffness matrix and load
vector, respectively. Solving for Uh yields the finite element
approximation uh(x).

3.2 Determination of Load Coefficients

To determine the unknown coefficients pi, we enforce
interpolation at the known data points (ξi, di):

u(ξi) =

nd∑
j=1

pjuj(ξi) + ubc(ξi) = di, i = 1, . . . , nd. (5)

This results in a linear system:
u1(ξ1) u2(ξ1) · · · und(ξ1)
u1(ξ2) u2(ξ2) · · · und(ξ2)

...
...

. . .
...

u1(ξnd) u2(ξnd) · · · und(ξnd)


︸ ︷︷ ︸

A


p1
p2
...

pnd


︸ ︷︷ ︸

P

=


d1
d2
...

dnd

−


ubc(ξ1)
ubc(ξ2)

...
ubc(ξnd)


︸ ︷︷ ︸

D

,

AP = D. (6)

Upon solving (6), the load coefficients pi are obtained. The PDE
solution with nd data points {(ξi, di)}nd

i=1 is then reconstructed
as

u(x) =

nd∑
i=1

pi ui(x) + ubc(x), (7)
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whereui be the solutions of the biharmonic equations∆2ui = qi
with homogeneous Dirichlet boundary conditions for each of
the load basis functions qi, i = 1, . . . , nq . ubc(x) satisfies the
boundary conditions alone.

4 Method Integration (PDE-SGS)

This section presents the combined approach that integrates
the PDE-based trend reconstruction with Sequential Gaussian
Simulation. The trend component is first estimated using the
biharmonic PDE model, and its uncertainty is assessed through
a leave-one-out cross-validation procedure. The resulting
trend variance is then incorporated into the SGS algorithm
to ensure that both spatial correlation and trend uncertainty
are represented in the final realization. The overall approach
yields spatial fields that honor the observed ata, the physical
smoothness constraints enforced by the PDE, and the stochastic
variability modeled through SGS.

4.1 Variance in the Trend Surface

To assess the uncertainty of the reconstructed trend, we employ
a leave-one-out (LOO) analysis. At each iteration, one data point
is removed, the trend surface is recomputed, and the excluded
location is predicted. This procedure quantifies the sensitivity of
the model to individual observations.

Formally, the ensemble of trend realizations is given by

T (x) = {u(j)(x)}NLOO
j=1 , (8)

where u(j)(x), j = 1, . . . , NLOO, denotes the surface obtained
by excluding the jth point.

The mean trend surface is defined as

ū(x) =
1

NLOO

NLOO∑
j=1

u(j)(x), (9)

and the corresponding variance is

σ2
T (x) =

1

NLOO − 1

NLOO∑
j=1

(
u(j)(x)− ū(x)

)2
. (10)

Thus, as a result, T (x) in (1) can be replaced by the mean trend
ū(x), and the expression can be rewritten as

U(x) = ū(x) +R(x).

Residuals are then defined as

ri = di − ū(ξi), i = 1, . . . , nd. (11)

4.2 Sequential Gaussian Simulation (SGS)

Once the trend component has been obtained, the residuals (11)
are treated as a stochastic field and modeled using Sequential
Gaussian Simulation. SGS generates multiple equally probable
realizations of a spatial variable that respect both the observed
values and their spatial correlation structure (Deutsch & Journel,
1992; Gómez-Hernández & Srivastava, 2021). The variogram is
the key input that characterizes this spatial dependence. In this
work, an exponential variogram model is employed,

γ(h) = c0 + c1

(
1− exp

(
β

(
h

ha

)2
))

, (12)

where c0 is the nugget, c1 the partial sill, ha the range, and β =
− log(20), a commonly used shape parameter in geostatistical
modeling, which determines the variance when h = ha, and
therefore is called the practical range. This model is chosen
because it is flexible and widely used in practice. The estimated
variogram parameters, reported in Section 6, are then used to
simulate the residual field. SGS is carried out on a discretized grid
of the domain. At each simulation step a grid node ξk is chosen
at random from the unsimulated set. For the first unsampled
location x∗ = ξ∗κ(1), the conditioning data consist solely of the
observed residuals,

Ĉ0 = {(ξi, ri)}nd
i=1.

Using ordinary kriging, the estimation at this location is
expressed as

zOK(x∗) =

nd∑
i=1

ωiri, (13)

subject to the unbiasedness constraint

nd∑
i=1

ωi = 1,

where ωi denotes the kriging weight assigned to the ith

observation (Webster & Oliver, 2007). The weights are obtained
by solving the linear system

Cov · ~x = Ce,o,

where Cov is the covariance matrix of the observation points,
Ce,o represents the covariance between the observations and
the estimation point, and ~x contains the kriging weights and
Lagrange multiplier. At x∗, the kriging mean µ(x∗) = zOK(x∗)
and the kriging variance σ2

R(x
∗) are combined with the variance

from the LOO-based trend surfaces, σ2
T (x

∗) (10), to account for
trend uncertainty. A simulated value is then drawn as

R(x∗) ∼ N
(
µ(x∗), σ2

R(x
∗) + σ2

T (x
∗)
)
.

This simulated value is appended to the conditioning set, and the
procedure is repeated for the next unsimulated location along
the random path. The process continues until all grid nodes are
simulated, resulting in one complete realization of the residual
field.
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4.3 Final Reconstruction

The final realization is obtained by adding the PDE-based trend
to the simulated residual field:

U(x) = ū(x) +R(x). (14)

Repeating this process with different random paths and
draws (e.g., K = 100) yields an ensemble of realizations.
These realizations reproduce both the large-scale PDE-based
trend structure and the small-scale stochastic variability while
honoring the observed data.

5 Implementation

The computational workflow is organized into three main stages:
(i) verification of the finite element solver by comparison with a
problem that admits an exact solution, (ii) estimation of the trend
through a biharmonic formulation discretized by finite elements,
and (iii) stochastic modeling of the residual component using
sequential Gaussian simulation (SGS).

5.1 Computing the Biharmonic Equation
Analytically

Before applying the method to synthetic data, we verify the
finite element implementation against a biharmonic problem
that admits a closed-form analytical solution. Such verification
is standard practice in numerical analysis and finite element
development (Braess, 2007; Brenner & Scott, 2008). The
one-dimensional biharmonic equation corresponds to the
classical clamped Euler-Bernoulli beam equation (Szabó &
Babuška, 2021; Timoshenko & Goodier, 1951):

u(4)(x) = 1, x ∈ [0, L], (15a)

with clamped boundary conditions

u(0) = u(L) = 0, u′(0) = u′(L) = 0. (15b)

Integrating (15a) four times yields

u(x) = 1
24x

4 +Ax3 +Bx2 + Cx+D.

Imposing the clamped conditions (15b) at x = 0 givesC = D =
0. The remaining conditions u(L) = 0 and u′(L) = 0 lead to

1
24L

4 +AL3 +BL2 = 0,
1
6L

3 + 3AL2 + 2BL = 0.

Solving this system yields

A = − L
12 , B = L2

24 .

Thus, the exact analytical solution is

uexact(x) =
1
24x

4 − L
12x

3 + L2

24 x
2, (16)

which is the unique polynomial satisfying the biharmonic
operator and clamped boundary conditions (Timoshenko &
Goodier, 1951). To evaluate the accuracy of the finite element
approximation uh, we compute the discrete maximum and L2

norms of the error at the computational nodes xj :

‖e‖∞ = max
j

∣∣uexact(xj)− uh(xj)
∣∣, (17a)

‖e‖2 ≈

∑
j

∣∣uexact(xj)− uh(xj)
∣∣2∆xj

1/2

. (17b)

These metrics allow us to compare numerical results with
the analytical solution and to verify the expected convergence
behavior of the biharmonic finite element discretization (Braess,
2007; Brenner & Scott, 2008).

5.2 One-Dimensional Biharmonic Trend
Estimation

We model the trend as the solution of a biharmonic boundary
value problem on the interval Ω = [0, L], with clamped
boundary conditions (3b) and (3c). The weak form (4) is
discretized using cubic Hermite shape functions on a uniform
mesh of N elements. The resulting stiffness matrix denoted by
Kh: Kh ∈ R2(N+1)×2(N+1) corresponds to the finite element
discretization of the biharmonic operator (3a). External forcing
is represented by Gaussian load functions centered at the data
points:

qi(x) =
1

σ
√
2π

exp

(
−1

2

(
x− ξi
σ

)2
)
, i = 1, . . . , nd,

(18)

with a set of synthetic data points {(ξi, di)}nd
i=1. The trend is

constructed as a linear combination of solution of (3a), each
uj(x) corresponding to a Gaussian load centered at ξi (18):

u(x) =

nd∑
j=1

pj uj(x),

where the coefficients pj are determined by enforcing
interpolation at the observation points.
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6 Results

6.1 Comparison with the Exact Solution

As an initial verification, we consider the biharmonic
boundary-value problem (15) on the domain x ∈ [0, 10], where
the exact solution (16) is expressed as:

uexact(x) =
1

24
x4 − 5

6
x3 +

25

6
x2.

We solved the discrete biharmonic problem using the
cubic-Hermite finite-element formulation described in Sec. 3.1.3,
and the comparison with the exact solution is shown in Figure 1.
This test is especially useful because the forcing term is constant,
and the exact solution is a smooth polynomial. As a result, it
allows for a quick but careful evaluation of our finite element
solver’s accuracy and boundary condition implementation.
Table 4 and Figure 1 summarize the error norms and condition
numbers for uniformly refined meshes. The infinity norm and
L2 error in (17) decrease rapidly for the finer mesh, indicating
the accuracy of the finite element discretization. The condition
number increases proportionally to h−4, where h represents the
mesh size. This is consistent with the theoretical behavior of
stiffness matrices associated with fourth-order operators (Ciarlet
& Raviart, 1972).

6.2 Application of the PDE to Synthetic Data

The methodology was implemented on a synthetic 1D dataset
after comparing the numerical and exact solutions. The
computational domain was defined on [0, 10] with nd = 14
irregularly spaced observation points: {(ξi, di)}nd

i=1. The soil
thickness data are

d = {1.5, 1.7, 2.0, 2.05, 2.5, 2.8, 3.0, 3.3, 3.8, 0.2, 1.0, 0.6, 4.5, 4.0},
at the corresponding locations

ξ = {6.0, 13.0, 7.0, 9.0, 11.0, 13.0, 8.0, 6.0, 27.0, 10.0, 9.0, 10., 15.0,
18.0}.

The biharmonic formulation (3a) was updated with a
Gaussian load function (18) and cubic Hermite finite element
discretization was used to create the basis functions. The
biharmonic trend estimator is a linear combination of basis
functions, with coefficients obtained by solving system (6) using
observed data (Figure 2, A). Near x = 4, two closely spaced
data points (Figure 2, A, marked by �) caused small oscillations
in the solution. To reduce artifacts and avoid negative soil
thickness estimation, the two points were replaced with their
average. The adjusted biharmonic trend is shown in (Figure 2,
B), where the averaged point is indicated by�, demonstrating the
method’s ability to capture smooth large-scale variations while
suppressing spurious fluctuations. To account for uncertainty in
the trend, 14 realizations (8) were generated using the sensitivity
analysis described in Sec. 4.1. The variance was computed using

Equation (10), and the mean trend defined in Equation (9) was
used as a reliable estimate of the underlying trend(Figure 2 (C)).

6.3 Choice of Load Functions

In our study, we implemented two types of load functions
to drive the biharmonic equation: the Dirac delta and the
Gaussian function. The Dirac delta function, δ(x − ξi),
represents an idealized point load concentrated exactly at a given
observation location ξi, i = 1, · · · , nd. Numerically, it can
be implemented either as a discrete spike at the nearest grid
point. Using the Dirac delta load minimizes oscillations when
data points are closely spaced, and thus improves the numerical
stability of the biharmonic solution. However, the physical
meaning of the load is better captured by the Gaussian function,
which distributes the influence of each observation over a small
region controlled by a spread parameter σ. The Gaussian load
gradually decreases away from the center, representing a more
realistic distributed effect of each data point on the sediment soil
thickness surface (Figure 2, A), because soil thickness is most
likely a smooth process in space. Therefore, while the Dirac
delta is useful for testing numerical performance, the Gaussian
function provides a physically meaningful approximation of the
influence of each observation on the surface construction of two
dimentional case.

6.4 Application Sequential Gaussian Simulation

The Sequential Gaussian Simulation procedure from Sec. 4.2 was
applied under two data settings to capture both large-scale trends
and small-scale variability (Figure 3).

1. SGS on the raw data (Ordinary Kriging setting). In this
case, the trend component is set to zero, and SGS is applied
directly to the observed (synthetic) soil-thickness values to
obtain an ordinary kriging-type estimate. (Figures 4, A
and C) show a single SGS realization and the mean of 100
realizations, respectively.

2. SGS on the residual field. To incorporate uncertainty
and capture small-scale variability, SGS was applied to the
residuals obtained after removing the biharmonic trend.
Multiple realizations were generated by sampling from
conditional Gaussian distributions at unsampled locations.
(Figure 4 , B) compares a single realization with the mean
of hundreds of leave-one-out (LOO) realizations, while
(Figure 4 , D) compares a single realization with the
average of 100 realizations based on all residual data. The
final hybrid field was reconstructed by adding the SGS
residuals to the biharmonic trend (14), resulting in a surface
that combines smooth large-scale structure with localized
stochastic fluctuations.
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Figure 1: A: comparison of the numerical (15b) and exact (16) solutions; B: log–log plot of the errors in the infinity norm (‖e‖∞)
and in the L2 norm (17).

Figure 2: A: Interpolation at data points (6) and (7); B: local averaging; C: average of leave-one-out estimation(9); D: Standard
deviation of the LOO curves (10).

Figure 3: A: Histogram of synthetic soil thickness (11); B:Histogram of transformed soil thickness; C: Histogram of residual (14).

6.5 Comparison of Modeling Approaches

Based on Table 1, the variogram parameters estimated
for the Ordinary Kriging (OK) and Hybrid (Trend + SGS)

models differ significantly, reflecting that each model captures
distinct underlying spatial structures. The smaller sill in the
Hybrid model indicates that the residual variance is lower,
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Figure 4: A: SGS (Ordinary Kriging estimation) applied directly to the raw data using LOO cross-validation. B: SGS applied to the
residual field using LOO, combined with the biharmonic trend (14). C: SGS(OK) of all synthetic soil-thickness data. D: SGS of the
residual computed from all synthetic soil-thickness, combined with the biharmonic trend.) (14).

confirming that the stochastic component primarily captures
local fluctuations around the physically based trend. The slightly
larger range in the Hybrid case also suggests improved spatial
continuity of the residuals, implying that spatial correlation
persists over longer distances. These variogram characteristics
demonstrate that the Hybrid approach achieves a better balance
between global smoothness and local variability compared to the
OK model alone.

(Table 2 and 3) summarizes the performance of the three
modeling approaches: the PDE-based trend model, Ordinary
Kriging (OK), and the hybrid approach (Trend + SGS), in terms
of Mean Absolute Error (MAE), relative Mean Absolute Error
(RMAE), and the coefficient of determination (R2). The error
criterias (Table 3) indicate a substantial improvement in model
performance when moving from the PDE-based trend model to
the OK and hybrid methods.

Ordinary kriging provides smooth estimates by definition, but
it assumes second-order stationarity. By modeling the trend
separately, we instead assume first-order stationarity of the
residuals, allowing for better representation of local variations
whilemaintaining a reasonable large-scale structure (Figure 4,A,
C).The error criteria for OK areMAE = 0.404, RMAE = 0.035,
and R2 = 0.992, indicating good local accuracy but limited
global structural representation. The PDE-based trend model

produces a smooth, curvature-driven surface that captures the
majority of the large-scale spatial variability while maintaining
physical consistency across the domain (Figure 2, C). The error
metrics are MAE = 0.966, RMAE = 0.083, and R2 =
0.970 . This demonstrates that the trend model provides
a globally coherent and physically meaningful estimation but
underestimates local variations near measurement points due to
the lack of a stochastic component.

The Hybrid approach (Trend + SGS) achieves the best overall
performance by combining the PDE-based trend with a
stochastic residual component. This integration captures soil
thickness variability at both large and fine scales. The Hybrid
model has the lowest errors, MAE = 0.326, RMAE = 0.028,
and the highest coefficient of determination, R2 = 0.993. It
preserves the physically consistent trend of the PDEmodel while
incorporating the local variability represented by the stochastic
Gaussian simulation (SGS) (Figure 4, B, D).

Table 1: Estimated variogram parameters for Ordinary Kriging
(OK) (Raw data) and Hybrid (Trend + SGS) models (residual).

Model Nugget Sill Range
Ordinary Kriging (OK) 4.69 13.39 24.07
Hybrid (Trend + SGS) 1.96 3.76 27.50
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Table 2: Sorted data by ascending Location
Location Synthetic Soil Thickness OK Trend Hybrid

0.4 10 9.73 8.95 9.97
1.2 10 9.75 12.22 10.33
2.0 9 8.98 6.73 9.08
3.0 6 6.25 6.83 6.09
3.4 13 12.74 12.38 12.96
4.0 7 7.25 9.59 7.21
4.1 9 8.43 8.29 7.23
5.0 11 10.98 10.45 11.02
5.6 13 12.88 13.24 13.06
6.0 8 8.27 7.76 8.04
6.6 6 6.46 6.56 6.11
7.6 27 25.74 26.18 26.98
8.0 18 17.52 19.02 18.15
9.0 15 14.79 11.62 15.00

Table 3: Validation criterias for the three methods
Method MAE RMAE R2

OK 0.404 0.035 0.992
Trend 0.966 0.083 0.970
Hybrid 0.326 0.028 0.993

Formulas:
MAE= 1

n

∑n
i=1 |yi − ŷi|, RMAE= MAE

ȳ
, R2 = 1−

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2

where yi is the synthetic soil thickness at location i, ŷi is the predicted value at
location i, n is the total number of data points, ȳ is the mean of synthetic soil

thickness.

6.6 Two-Dimensional (Gaussian Spread)

We extend the proposed methodology to a two-dimensional
setting governed by the biharmonic plate equation (2a) -(2c). The
numerical experiments are designed to reconstruct soil thickness
trend and to estimate the unknown coefficients pi associatedwith
theGaussian load functions centered at the synthetic observation
locations ξ̃i (18). The parameter σ controls the spatial spread of
each Gaussian load. A small value such as σ = 0.1 yields a more
localized load distribution and results in reduced oscillations in
the reconstructed surface compared with a wider kernel (e.g.,
σ = 0.5). The larger σ spreads the load over a broader
region, causing interactions between nearby observation points
and introducing additional oscillatory artifacts in the solution
(Figure 5 and 6).

In this experiment, we use the soil thickness data

d̃ = (1.6, 1.2, 0.6, 1.6, 2.0, 1.0, 2.0, 1.8, 0.8, 2.4, 0.9, 0.7, 1.0, 0.5,
0.6), at the locations

ξ̃ = {(3.0, 5.0), (6.0, 5.5), (8.0, 7.0), (5.0, 7.0), (7.0, 7.0), (3.0, 7.5),
(3.1, 3.0), (4.0, 6.0), (5.0, 6.0), (5.1, 6.1), (6.0, 4.0), (8.0, 2.0), (5.0,
4.0), (7.0, 5.0), (9.0, 1.5)}.

Table 4: Error norms and condition numbers for the problem
in Figure 1, solved with FEM on the interval [0, 10] using cubic
Hermite elements.

N h ‖e‖∞ ‖e‖2 cond(Kh)
20 5.000× 10−1 1.000× 10−2 2.273× 10−2 1.71× 104

40 2.500× 10−1 1.250× 10−3 2.841× 10−3 2.75× 105

80 1.250× 10−1 1.566× 10−4 3.552× 10−4 4.41× 106

160 6.250× 10−2 1.958× 10−5 4.440× 10−5 7.06× 107

Figure 5: (A) Two-dimensional interpolation results with σ =
0.1. (B) Two-dimensional interpolation results with σ = 0.5.
The points� and � highlight the two data points responsible for
the observed oscillation.
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Figure 6: Results after replacing the two data points (shown as�
and � in Figure 5) with their averaged value. (A) uses σ = 0.1,
and (B) uses σ = 0.5.

7 Discussion

The one-dimensional experiments were carried out to examine
the behavior of the proposed approach in a controlled setting
where the exact solution is known (Figure 1). This allows
a transparent assessment of how the biharmonic trend model
and the stochastic residual component contribute to the final
estimate. The results show that the biharmonic trend captures
the large-scale structure of the soil profile and produces a smooth
background surface. This smoothness arises naturally from the
biharmonic operator and prevents the type of overfitting that
may occur when interpolation is applied directly to sparse or
unevenly spaced data (Figure 2). The trend is therefore well
suited for representing the slowly varying component of the soil
thickness field. The stochastic component introduced through
SGS adds the local variability that the PDE-based trend cannot
reproduce. Because SGS simulates conditional realizations
using the estimated variogram structure, it preserves the spatial
correlation observed in the data while introducing realistic
small-scale fluctuations. The ensemble of SGS realizations
provides a measure of uncertainty, and the variance field
highlights regions where predictions become less reliable. As
expected, these areas coincide with locations where observations

are sparse or where the measured values exhibit sharp deviations
from the surrounding trend. Interpolation-related limitations.
The study also revealed limitations when interpolation is used
directly on the data without regularization. In particular, when
observations lie very close to each other as illustrated by the
points marked with � and � the interpolant may develop
oscillations in the reconstructed surface. This behavior is visible
in both one-dimensional and the two-dimensional examples
(Figures 4, A , Figures 5, A and B) and is a well-known artifact
of high-order interpolation on irregularly spaced data. Local
averaging of the problematic points reduces these oscillations
(Figures 4, B, Figures 6, A and B) and leads to a more stable
surface while preserving the general structure of the dataset. To
construct the two-dimensional discrete form of (2), we used the
DUNE approach (Bastian et al., 2021). The dune-vem module
enables the use of C1-conforming virtual element spaces, which
provide a smooth representation suitable for the biharmonic
equation. This formulation reduces the number of degrees of
freedom relative to classical finite elements without sacrificing
accuracy (Beirão da Veiga et al., 2013; Dedner & Hodson, 2024).
In addition, the choice of the kernel width σ in (18) affects the
smoothness and flexibility of the basis functions: larger values
of σ allow sharper local variations, while smaller values produce
smoother surfaces. The numerical experiments in 2D (Figures 5,
A and B) illustrate this influence.

Overall, the combination of a biharmonic trend and a stochastic
residual model provides a balance between physical smoothness
and local variability. The trend offers global coherence, while
SGS supplies the fine-scale fluctuations needed to represent the
observed soil thickness. The 1D tests verify the correctness of the
approach and clarify the role of each component before applying
the method to more complex two-dimensional domains.

8 Conclusion

The hybrid PDE-SGS method demonstrates advantages over the
individual components, providing improved predictive accuracy
and a more realistic representation of soil thickness variability.
While the present study focuses on one-dimensional and
regular two-dimensional domains to verify the mathematical
formulation and numerical implementation, the framework
naturally extends to irregular two-dimensional settings. In such
cases, the treatment of boundary conditions becomes more
practical. To clarify this point, we now refer the reader to
our extended work (Bekele et al., 2025), where we have already
implemented a mixed, data-driven boundary (domain) strategy:
observed data are used to prescribe boundary values along
measured boundary segments, while Neumann conditions are
applied on segments lacking observations. As demonstrated in
(Bekele et al., 2025), this approach enhances the physical realism
of the reconstructed soil-thickness surfaces.
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