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Abstract
Curve reconstruction is the process of estimating a smooth function or curve that fits a given set
of data points, either exactly (interpolation) or approximately (fitting). Classical approaches,
including global polynomial interpolation, splines, Hermite interpolation, and radial basis
function fitting, face challenges when data are sparse, irregularly distributed, or noisy. In this
paper, we propose a curve reconstruction method based on the discrete form of the biharmonic
equation. The method formulates reconstruction as a constrained quadratic optimization
problem, incorporating both equality and inequality constraints and producing globally C1

smooth curves. The approach is physically interpretable, penalizing excessive bending, as in the
case of a thin elastic beam, and can be extended to higher-dimensional surface reconstruction.
Performance is evaluated through numerical experiments on known functions and synthetic data
with various distributions and constraints, including small perturbation tests to assess stability
and robustness. The results demonstrate that the proposed method reproduces the data, enforces
the prescribed bounds, and remains stable under irregular sampling and noise.

Keywords: Curve reconstruction; Biharmonic equation; Constrained quadratic
programming problem; Interpolation; Variational form.
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1 Introduction

Curve reconstruction is a process by which a curve or function
is determined that either fits or passes exactly through a given
set of data points. It can be seen as an inverse problem, where
the given data are considered as observations and the curve
is unknown or is to be estimated. In general, there are two
approaches to curve reconstruction, namely interpolation and
fitting (approximation, regression). Interpolation is the process
of constructing a curve that passes exactly through all given data
points. It is suitable when the data are exact. Fitting, on the other

hand, involves finding a curve that approximates the data points
butmay not pass through any of them, oftenminimizing the total
error between the curve and the points. It is appropriatewhen the
data have measurement errors, noise, or uncertainty.

Both approaches are applicable in a number of areas ranging from
digital signal processing and numerical integration to computer
graphics, computer-aided design (CAD), and geosciences,
among others (Farin, 2002; Li & Heap, 2008; Mazarguil et al.,
2022; Phillips, 2003; Piegl & Tiller, 2012).

Among the classical interpolation methods, global polynomial
interpolation is one, where a unique polynomial of degree n
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is chosen to pass through n + 1 given data points. This
method provides an explicit analytic form for the interpolant.
The unknowns in the polynomial are computed by solving
a corresponding system of linear equations whose coefficient
matrix is a Vandermondematrix. Themethod provides a smooth
interpolating curve but has some drawbacks. If one data point
is added or removed, the polynomial must be recomputed from
scratch. Moreover, the coefficientmatrix is highly ill-conditioned
even for a small number of data points n (e.g., n ≥ 10 or
so), leading to large numerical errors. Lagrange interpolation
reformulates the problem using basis polynomials instead of
monomials. This formulation provides an explicit, closed-form
solution, thereby avoiding the need to solve a system of linear
equations. However, it still shares the same core limitation:
adding new data requires recalculating the entire polynomial,
which makes it computationally expensive (Hoffman & Frankel,
2018; Zarowski, 2004). Newton’s divided difference method, on
the other hand, improves this by offering a hierarchical recursive
form, which reuses previous computations when new points are
introduced, making it more practical, though still susceptible to
oscillations (Runge’s phenomenon) for high degrees (Hoffman &
Frankel, 2018; Phillips, 2003).

Instead of relying on a single high-order global polynomial,
piecewise polynomial interpolation is an alternative approach
that provides a more stable result and avoids some of the
aforementioned drawbacks. The simplest examples are
piecewise constant (nearest-neighbor) and piecewise linear
methods. These methods are easy to implement but are either
discontinuous (in the constant case) or only C0 continuous
with sharp corners (in the linear case) at the data points.
Spline interpolation generalizes this idea by connecting together
low-degree polynomials while enforcing smoothness at the
points. In particular, cubic splines ensure the continuity of the
function and its first two derivatives. A key property is that,
among all globally C2 interpolants, the natural cubic spline
uniquely minimizes the L2 norm of the second derivative.
Different forms exist, such as natural splines, with zero curvature
at the ends, and clamped splines, with prescribed endpoint slopes
(de Boor, 2001; Schumaker, 2007). Additional approaches for
reconstruction using function values can be found in (Farin,
2002; Hoffman & Frankel, 2018).

In addition to interpolation using function values, derivative
information can also be incorporated. This is the principle
behind Hermite interpolation, which constructs a piecewise
polynomial that not only matches the given values but also
respects the slopes at each node (Xu & Xu, 2022).

In spatial statistics, kriging is one of the most widely used
interpolation methods. It provides the best linear unbiased
estimator (BLUE) of unknown values (Chiles & Delfiner, 2012;
Journel & Huijbregts, 1978). The method treats the data as
realizations of a random field characterized by a covariance
function C(h). Predictions at unsampled locations are obtained
as weighted averages of observed data, with the weights chosen
to minimize the mean square prediction error. As a result,
kriging yields unbiased estimates, explicitly accounts for spatial
correlation, and quantifies prediction uncertainty. These features
make it particularly effective when data are noisy or sparse,
although it is not primarily intended for geometric curve

reconstruction (Cressie, 1993).

Fitting methods relax the strict requirement of passing exactly
through all data points. Instead, they approximate the data by
minimizing residual errors, most commonly in the least-squares
sense. Such approaches are generally more robust to noise and
outliers, making them better suited to real-world datasets where
exact measurements are rarely available (Hoffman & Frankel,
2018).

Despite the wide range of available interpolation and fitting
methods, several challenges remain. Interpolation enforces exact
agreement with the data points, which can lead to overfitting and
oscillations, such as Runge’s phenomenon. Fitting methods, by
minimizing residuals, allow for smoothing but require careful
selection of the model and regularization. Extending these
approaches to two-dimensional surface reconstruction with
sparse or irregularly spaced points is often difficult. Moreover,
many classical methods struggle to systematically incorporate
both equality and inequality constraints and generally lack a
direct physical interpretation.

The motivation behind this study arises from the problem of
reconstructing the bedrock topography of a region from sparse
measurement data, such as wells or exposed bedrock outcrops,
which has been the focus of subsequent studies (Kitterød,
2017; Kitterød & Leblois, 2019, 2021). To gain intuition, we
first consider the one-dimensional analogue: reconstructing a
smooth curve from discrete points. To this end, we employ
the biharmonic equation from elasticity theory, which penalizes
excessive bending and produces globally smooth solutions
suitable for both one- and two-dimensional reconstructions
(Szilard, 2004). Conceptually, the biharmonic equation models
the deflection of a thin elastic plate or beam, and by applying
appropriate constraints, it is possible to deform and generate a
surface or curve that honors the given data.

In this paper, we propose a discrete biharmonic formulation
for curve reconstruction, framed as a constrained quadratic
optimization problem. This method naturally incorporates
both equality and inequality constraints, handles irregularly
spaced data, and provides a physically interpretable principle of
smoothness. Moreover, it establishes a framework for surface
reconstruction in higher dimensions.

The structure of this paper is as follows. Section 2 introduces the
proposed curve reconstruction model. In Section 3, we detail
the discretization method employed. Section 4 then presents
the constrained quadratic programming approach used to solve
the resulting discrete system. A discussion of performance
evaluation metrics is provided in Section 5. Finally, the
numerical results, discussion, and conclusion are presented in
Sections 6, 7, and 8, respectively.

2 Mathematical Modeling

In this section, we explain how a smooth curve is generated from
a given set of data points on the xy−plane. For this purpose,
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let 0 ≤ x1, x2, . . . , xn ≤ L be locations of data points on
the x axis and let y1, y2, . . . , yn represent the corresponding
measurements(exact values or bounds) along the y-axis. Our
main goal is to construct a globally C1 smooth curve that
honours the given data while satisfying the specified equality and
inequality constraints at each point. For this end we consider the
biharmonic equation problem on Ω = [0, L] :

u(4)(x) = q(x), in Ω, (1a)

with Dirichlet boundary conditions

u(0) = y0, u(L) = yL, (1b)
u′(0) = α, u′(L) = β. (1c)

In the context of beam theory, the variable u denotes the
transverse deflection, while q represents the applied lateral
load. The conditions given in (1b, 1c) correspond to Dirichlet
boundary conditions for (1a) and physically model a beam that
is clamped at both ends. Let ∂Ω = ∂ΩD denote the boundary of
the region Ω which in this case is {0, L}.

In particular if x0 = 0 and xn = L, then y0 = y1 and yL = yn.
Given the Sobolev space

H2(Ω) =
{
u ∈ L2(Ω)

∣∣ Dαu ∈ L2(Ω), ∀ |α| ≤ 2
}

and the subspace

H2
D = {v ∈ H2(Ω) : v|∂ΩD

= v′|∂ΩD
= 0},

the variational form of (1) is:

Find u ∈ H2(Ω) satisfying the boundary conditions (1b), (1c)
and

∫
Ω

u′′v′′dx =

∫
Ω

qvdx, ∀v ∈ H2
D. (2)

In addition, at the given data points a set of constraints must be
satisfied:

u(xi) = yi, for i ∈ E , (3)
u(xi) ≤ yi, for i ∈ I, (4)

where E is the indices of the data points where the measured
values are exact, and I the set of indices corresponding to data
points where the measurements define inequality conditions.
These sets are disjoint (E ∩ I = φ), allowing the reconstruction
to satisfy equality conditions at E and inequality bounds at I .

The idea in this curve reconstruction approach is based on
the use of the discrete form of (2, 3, 4) to mimic a deflected
beam satisfying the given boundary conditions and constraints
provided in the data.

The weak form (2) can be written in the abstract form as: Find
u ∈ H2(Ω) satisfying the boundary conditions (1b) such that,

a(u, v) = l(v), ∀v ∈ H2
D.

Here a(u, v) =
∫
Ω
u′′v′′dx and l(v) =

∫
Ω
qvdx represent

the bilinear and linear forms respectively. This weak form
is equivalent to the energy minimization problem where the
solution uminimizes the functional:

J(v) =
1

2
a(v, v)− l(v).

In the sense of beam theory, the quantities 1
2a(u, u) =

1
2

∫
Ω
(u′′)2dx and l(u) =

∫
Ω
q(x)u(x)dx represent the strain

(elastic) energy and potential energy (work done by applied
forces), respectively (Gavin, 2014; Szilard, 2004). The former
represents the energy stored in the beam as a result of bending,
quantifies the internal resistance of the material to deformation,
which increases with the curvature of the beam. Since q(x)
is a distributed load and u(x) is the deflection at the point x,
the product q(x)u(x) gives the infinitesimal work done by the
applied force. The total energy of the system is then expressed as:

Π[u] =
1

2

∫
Ω

(u′′)2dx−
∫
Ω

q(x)u(x)dx. (5)

3 Discretization

The discrete form of (2, 3, 4) can be obtained by using the Finite
Element Method (FEM) (Larson & Bengzon, 2013; Quarteroni,
2009) taking a finite dimensional function space:

Vh = Span{φ0, φ1, . . . , φndof−1} ⊂ H2(Ω),

where φi are suitably chosen basis (shape) functions, and ndof
denotes the total number of degrees of freedom (DOF). The
associated subspace that satisfies the homogeneous Dirichlet
boundary conditions is defined as :

Vh
D = {φ ∈ Vh : φ = φ′ = 0, on ∂Ω}.

To define the basis functions, the physical domain Ω = [0, L] is
partitioned intoN finite elements (subintervals) as:

0 = ξ0 < ξ1 < ξ2 < . . . < ξN = L,

where hi = xi+1 − xi denotes the length of the ith element (for
a uniform mesh, hi = h). This process converts the continuous
domain into a computational mesh consisting of nodes {xi}Ni=0

and elements [xi, xi+1].

Within each element, local basis (shape) functions are
defined, and the global basis functions {φi(x)}ndof−1

i=0 are
constructed by assembling the local contributions according
to the mesh connectivity. These basis functions provide the
finite-dimensional approximation space Vh ⊂ H2(Ω) used for
the discrete formulation.

Within this finite dimensional space, the unknown displacement
u(x) is approximated as a linear combination of these basis
functions, as:
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uh(x) :=

ndof−1∑
i=0

ciφi(x),

where the coefficients ci’s are the unknown degrees of
freedom(DOF) of the system.

But, for the finite element space Vh to be a valid subspace of
H2(Ω), the minimum requirement on its basis function is C1

continuity. This ensures, the functions as well as their weak
first and second derivatives be square integrable across elements
boundary, hence belong toH2.

To determine these basis functions in a reference element,
completeness and compatibility requirements (Ottosen &
Petersson, 1991) indicate that the element level deflection ue

must be expressed as:

ue(x) = α0 + α1x+ α2x
2 + α3x

3, x ∈ [ξi, ξi+1].

Taking the displacement and slope DOF at the ends ue(0) =
ui, (u

e)′(0) = θi, u
e(h) = ui+1, (u

e)′(h) = θi+1, we can show
that

ue(x) = Ne(x)de,
where

• de = [ui, θi, ui+1, θi+1]
T is the vector of nodal DOFs

(displacements u and slope θ),

• Ne(x) = [φe
1(x), φ

e
2(x), φ

e
3(x), φ

e
4(x)] is the row vector of

shape functions.

Moreover the element basis functions are given in closed form as:

φe
1(x) = 1− 3

x2

h2
+ 2

x3

h3
, φe

3(x) =
x2

h2

(
3− 2

x

h

)
,

φe
2(x) = x

(
1− 2

x

h
+

x2

h2

)
, φe

4(x) =
x2

h

(x
h
− 1

)
.

Two basis function at each grid node of the mesh are generated
one for the displacement and one for the slope. The global
basis functions are then defined using two adjacent element
basis functions and zero in all other elements. In Fig. 1 the
domain [0, L] is discretized into five subintervals and a total of
twelve global basis functions are defined: four (φ0, φ1, φ10, φ11)
correspond to boundary basis functions, while for the internal
nodes, φi with even i represent displacement DOFs and the
remaining functions correspond to slope DOFs at each node.

Figure 1: Graphical illustration of the global basis functions. The
domain is subdivided into five elements with six nodes.

In this way, we construct the nodal displacement basis functions
φ2i and the nodal derivative basis functions φ2i+1 for i =
0, . . . , N , giving a total of 2(N + 1) degrees of freedom. These
functions satisfy the interpolation conditions:

φ2i(ξj) = δij , φ′
2i(ξj) = 0, φ2i+1(ξj) = 0, φ′

2i+1(ξj) =
δij , ∀i, j,

with δi,j representing the Kronecker delta function of two
integres i, j defined as:

δij =

{
1 (i = j)

0 (i 6= j)
.

Replacing u with uh and v by an arbitrary function φj ∈ Vh
D we

arrived at the discretized formulation as:

ndof−1∑
i=0

ci

∫
Ω

φ′′
i φ

′′
j dx =

∫
Ω

qφjdx, j ∈ J , (6)

such that:
ndof−1∑
i=0

ciφi(xk) = yk, for k ∈ E , (7)

ndof−1∑
i=0

ciφi(xk) ≤ yk, for k ∈ I, (8)

whereJ represent the set of indexes of basis functions φj ∈ Vh
D .

This can be written in matrix form as:

Ax = b, (9a)
Cx = d, (9b)
Ex ≤ e, (9c)

with x is the vector of degrees of freedom of uh. Here, the
matrix A represents the corresponding stiffness matrix, which
is symmetric and positive definite; b is the load vector. The
constraint matrices C (equality) and E (inequality) consist of
basis function values at the respective data locations. Since the
basis functions possess local support and all data points are
distinct, both C and E are guaranteed to have full row rank.
As the boundary is of Dirichlet type the DOF c0, c1, cndof−2 and
cndof−1 are specified in (9).

In some practical applications, the values or derivatives at the
boundaries may be unspecified. If the boundary derivative
values u′(0) and u′(L) are unknown, the corresponding degrees
of freedom in the approximate solution uh are c1 and cndof−1.
These can then be treated as unknowns and estimated by solving
the discrete system (9). Similarly, if the derivatives are known
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but the boundary displacements u(0) and u(L) are unknown,
the corresponding degrees of freedom c0 and cndof−2 can be
estimated from the same system.

4 Constrained Quadratic Programming
Approach

From the discretization of the continuous form, we arrive at a
system of equations and inequalities (9). In general, this system
is overdetermined and may also include inequality constraints.
From the outset, our goal has been to construct a globally smooth
(C1) curve based on the concept of bending beams. By the
nature of beam deflection, it is evident that at equilibrium a beam
bends to minimize its total energy (5), comprising both internal
and external contributions. In the discrete formulation, these
are represented by 1

2x
TAx (internal energy) and−xTb (external

energy), with the total energy given by:

J(x) =
1

2
xTAx− xTb.

Consequently, we choose to solve the system using a constrained
quadratic programming (QP) formulation:

min
x

1

2
xTAx− bT x, (10a)

subject to Cx = d, (10b)
Ex ≤ e. (10c)

This structure makes the problem a natural candidate
for quadratic programming as the objective is quadratic
(bending energy), ensuring smoothness,the equality constraints
guarantee interpolation and exact boundary enforcement and
the inequality constraints provide flexibility to incorporate
additional physical or geometric requirements. Practically the
quadratic programming problem is solved in Python using
the cvxpy package with the OSQP solver, an operator splitting
method designed for convex quadratic programs with linear
equality and inequality constraints.

In particular, whenI = {}, i.e., with no inequality constraint, the
problem (10) reduced to interpolation and has the lagrangian

L(x, λ) = 1

2
xTAx− bT x+ λT (Cx− d).

Using the first-order optimality condition onL, i.e., ∂L∂x = ∂L
∂λ =

0, we have the normal equation, i.e. the Karush–Kuhn–Tucker
(KKT) system, for quadratic programming problem:

[
A CT

C 0

]
︸ ︷︷ ︸

M

[
x
λ

]
=

[
b
d

]
︸︷︷︸
rhs

. (11)

Existence of reconstructed curve:

Since the stiffness matrix A is symmetric positive definite, the
objective function is strictly convex. The equality constraint
matrix C ∈ R|E|×ndof , from the local support nature of the basis
functions and distinct data point locations, has full row rank.
This implies that the linear map C : Rndof → R|E| is surjective.
Consequently, for any prescribed right-hand side d ∈ R|E|, the
constraint Cx = d defines a nonempty affine subspace, i.e., a
feasible region.

Minimizing a strictly convex function over a nonempty affine
set guarantees the existence and uniqueness of the minimizer
[x,λ]T . Equivalently, the associated KKT matrix (11) is
nonsingular. Because the reconstructed curve uh is obtained
from x through a linear combination of the basis functions, the
resulting curve is unique within the chosen approximation space.
This establishes the well-posedness of the reconstruction step.

Dynamic Adaptation of the Method:

The method is able to update the solution incrementally when
new data points are added. For example, if a single data point is
added, this corresponds to a constraint of the formCnewx = dnew,
resulting in the KKT system

 A CT CT
new

C 0 0
Cnew 0 0


︸ ︷︷ ︸

Mnew

 x
λ

λnew

 =

 b
d

dnew


︸ ︷︷ ︸
rhsnew

. (12)

The structure of Mnew indicates that the system does not need
to be rebuilt from scratch when a new data point is added.
Instead, we append Cnew to the original matrix M and dnew to
the right-hand side vector. This makes the method dynamically
updatable and significantly reduces computational cost.

Since the problem has a unique solution, it can be formally
obtained asM−1

newrhsnew. However, the computation ofM−1
new can

be efficiently performed using the block matrix inverse formula:

M−1
new =

(
M BT

B 0

)−1

, B =
(
Cnew 0

)
,

=

(
M−1 −M−1BTS−1BM−1 M−1BTS−1

S−1BM−1 −S−1

)
,

S = BM−1BT .

This expression is entirely in terms of the original inverse M−1

and the new constraint Cnew. The Schur complement S =
BM−1BT = CnewXCT

new, whereX is the top-left block ofM−1.
The invertibility ofS is guaranteed as long as the rows ofCnew are
linearly independent of the rows of C .

Let

Vold =

(
xold
λold

)
= M−1rhs =

(
X Y
Z W

)
rhs,

Bekele S.S. and Arara A.A. (2025) 5
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be the solution of the original system (11). Then the solution of
the updated system (12) can be expressed as

λnew = S−1(Cnewxold − dnew), (13a)

x = xold −XCT
newλnew, (13b)

λ = λold − ZCT
newλnew. (13c)

The solution formula (13) has a recurrence-like structure: each
time a new constraint is added, the updated solution is obtained
from the previous solution plus a correction depending only on
the new constraint. This allows the solution to be incrementally
updated without re-solving the entire system, and sequential
additions produce a chain of solutions that growwith the number
of constraints.

5 Model Evaluation

The performance of the proposed method is evaluated
using approaches, combining quantitative error metrics with
qualitative assessment. To establish accuracy, we first validate
the method against a known analytical function. This provides
a benchmark for quantifying error through several metrics,
including the L2 norm for overall fit, the L∞ norm for the
maximumpointwise deviation, and theL2 normof the derivative
error to assess smoothness and physical plausibility of the
reconstructed curve. In addition, the normalized root mean
square error (NRMSE) is employed for scale independent
comparison.

In addition to these quantitative metrics, qualitative assessment
is conducted by visually inspecting the reconstructed curves.
This includes examining the ability of the method to accurately
interpolate equality constraints, respect inequality bounds,
maintain smoothness across the domain, and avoid spurious
oscillations. Visual comparisons are also made between the
reconstructed curves and classical interpolators, such as cubic
splines, under both uniform and irregular sampling, as well as in
the presence of small perturbations in the input data.

Formally, let f denote the exact function and g the reconstructed
curve obtained using the proposed approach. The error function
is defined as e(x) = f(x) − g(x). The following metrics are
considered to capture different aspects of the error, including
function values, derivatives, and integral properties:

• Normalized Root Mean Square Error (NRMSE):

NRMSE =
1

fmax − fmin

√√√√ N∑
i=1

(f(ξi)− g(ξi))2

N
.

• L∞ Norm of the Error (L∞- Error): Also known as the
maximum error, itmeasures the largest pointwise deviation.

||e||∞ = ||f − g||∞ = sup
x∈[0,L]

|f(x)− g(x)|.

• L2 Norm of the Error (L2-Error): Measures the
mean-squared difference between the two curves. Smaller
values indicate a better overall fit.

||e||2 = ||f − g||2 =

√∫ L

0

(f(x)− g(x))2 dx.

• L2 Norm of the First Derivative Error: Evaluates how well
the slope of the reconstructed curvematches the slope of the
exact curve.

||e′||2 = ||f ′ − g′||2 =

√∫ L

0

(f ′(x)− g′(x))2 dx.

Beyond numerical accuracy, the robustness of the method is
also examined. In cases where the exact function is unknown,
stability is assessed by introducing small random perturbations
to the input data and verifying that the reconstruction remains
consistent. Furthermore, the method’s performance can be
systematically evaluated under different point distributions,
including uniformly spaced, irregularly spaced, and clustered
points. Finally, all reconstructions are subject to visual inspection
to ensure physical plausibility and to confirm the absence of
spurious oscillations.

Sensitivity analysis can also be performed for the problem (10)
to examine how small perturbations in the measurement data
d affect the solution x. Let x∗ be the optimal primal solution
of the unperturbed problem, and let λ∗ and µ∗ be the optimal
dual multipliers for the equality and inequality constraints,
respectively. Define the active set

A = { i : Eix∗ = ei },

where Ei and ei denote the ith row of the matrix E and the ith
entry of the vector e, respectively.

Suppose a small perturbation ∆d is applied to d, and assume
that the active set A remains unchanged. The corresponding
perturbed solution becomes x∗ + ∆x, with dual multipliers
λ∗ + ∆λ and µ∗

A + ∆µA. Subtracting the KKT systems of
the perturbed and unperturbed problems yields the linearized
system  A CT ET

A
C 0 0
EA 0 0


︸ ︷︷ ︸

K

 ∆x
∆λ
∆µA

 =

 0
∆d
0

 .

Thus, ∆x
∆λ
∆µA

 = K−1

 0
∆d
0

 =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 0
∆d
0

 ,

Bekele S.S. and Arara A.A. (2025) 6
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and we obtain
∆x = K12 ∆d = J ∆d, (14)

where J = ∂x∗
∂d is the Jacobian of the optimal solution with

respect to the data d.

From (14), we see that the perturbation in the solution is linearly
related to the perturbation in the input data.

Let

G =

(
C
EA

)
, S = −GA−1GT , S−1 =

(
S−1
11 S−1

12

S−1
21 S−1

22

)
.

Then the sensitivity matrix J admits the explicit form

J =

A−1CT (CA−1CT )−1, ifA = ∅,

−A−1
(
CTS−1

11 + ET
AS

−1
21

)
, otherwise.

Using the linear relation (14), for a set of perturbations
{∆d(k)}Kk=1 and the resulting perturbations in the solution
{∆x(k)}Kk=1, we may compute the maximum deviation at
each grid point, maxk |∆x(k)i |, the standard deviation σx =
std{∆x(k)}, and visualize the corresponding 95% confidence
interval about the optimal solution x∗.

6 Results

In this section, we use the discrete biharmonic curve
reconstruction method under a variety of scenarios. The results
are organized to show the method’s flexibility in handling
different types of constraints and boundary conditions, as well as
its accuracy compared to classical interpolation technique. For
each of this result the lateral load q is chosen to be zero. We
consider the following cases:

• Reconstruction with only equality constraints at the given
data points, illustrating the ability of the method to exactly
interpolate the known values.

• Reconstruction with both equality and inequality
constraints at selected points, demonstrating the method’s
capability to enforce bounds on the solution.

• Validation of the method using data sampled from
known analytical functions, to quantify the accuracy and
robustness of the reconstructed curves.

• Observe the stability of the resulting curve reconstruction
for small perturbation in the data points.

Imposed conditions

Reconstruction of a curve using the proposed method in the
presence of equality and/or inequality conditions at data points
and specified boundary condition.

Figure 2: Plot of the curve reconstructed using the discrete
biharmonic approach for the case of a randomly chosen data
consisting of only equality conditions (Left) and for the case
where data contain both equality, lower bound and upper bound
at some locations (Right).

As shown in Fig.2, for the given set of synthetic data points and
specified Dirichlet boundary conditions (DBCs), the proposed
method generates a curve that passes through all interpolation
points, satisfies the prescribed lower bound, upper bound
constraint, and enforces knownDirichlet boundary conditions as
expected. In particular, the reconstructed curve in Fig. ( 2, Right)
the interpolation points are with coordinates (xdata, ydata) =
([0, 1, 2, 3.5, 4, 4.5, 5], [0, 3, 4, 2, 1.6, 1, 3]), the location of
the upper bounds are at xup = [0.5, 1.2, 2.5, 3] with values
yup = [0.7, 4, 3, 2.1], location and values for the lower bound
is xlb = [2.6], ylb = [2.3] and the derivates at the ends are zero.

For this data, the resulting curve has values [0, 3, 4, 2, 1.6, 1, 3]
at the interpolation, [0.7, 3.63, 2.63, 1.65] at the upper bound
locations and [2.34] at lower bound. The results indicate the
interpolation constraints are satisfied exactly. The reconstructed
value at the lower bound location exceeds the requiredminimum
of 2.3, and the values at the upper bound locations remain
below or equal to the specified limits. This demonstrates that
the method can simultaneously interpolate given data and honor
inequality constraints, producing a curve that is both accurate
and physically consistent.

Figure 3: Plot of the derivative of the reconstructed curve(Fig: 2;
Right)
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In addition, the smoothness requirement is confirmed by
examining the derivative of the reconstructed curve. As shown
in Fig. 3, the derivative is continuous, indicating that the
reconstructed curve possesses a continuous first derivative and
therefore belongs to the class C1. Moreover, the boundary
derivative conditions, which are zero at both ends in this case,
are also satisfied exactly, as evident from the figure.

In some practical applications, the endpoint derivatives are
typically unknown leading to presence of unspecified Dirichlet
boundary conditions. An estimate of these can be obtained from
the solution of the discrete system.

Figure 4: Reconstructed curve from a given set of data points
where the endpoint derivatives(Left) and values(Right) are not
prescribed and are instead estimated.

Performance of the proposed method

To assess the performance of the proposed method, data points
are taken from known representative functions. For each
case, visual comparison of the exact curve, the reconstruction
produced by our method, and a standard cubic spline
interpolator, are shown in Fig. 5. Data points are taken from
a known function: f(x) = sin(x) with irregularly spaced points
Left and Bessel function of the first kind of order zero J0(

√
x)

with regularly spaced points Right.

Figure 5: Visual comparison of the proposed method with the
cubic spline.

Additional functions from different classes are selected to further
evaluate themethod, each representing a distinct curve behavior.
For each function, performance metrics are computed using
uniformly spaced data points, and the results are reported in
Table 1. The trapezoidal rule was employed to approximate the
integrals appearing in the matrices. The reported error norm
values(maximumnorm,L2 normof the error) can be normalized
and interpreted as percentages relative to the range.

Stability

The influence of small perturbations in the input data on the
reconstructed curve gives important indication of the stability of
the proposed method. To examine this, we introduce random
noise of small magnitude to the y-values of the sampled points
and analyze the corresponding changes in the reconstructed
curve. Both uniformly spaced and non uniformly spaced data
points are considered to assess the method’s resilience under
different sampling patterns. In Fig. 6 and 7 data points are taken
from the function f(x) = 1

1+25x2 and small perturbations are
applied to the corresponding yi’s.

Figure 6: Effect of small perturbations∆d’s on the reconstructed
curve with 95% confidence interval: equally spaced points.
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Table 1: Performance of the proposed approach for data points sampled uniformly from known analytic functions. Here, n denotes
the number of data points.

f L n Range(f ) NRMSE ||e||∞ ||e||L2 ||e′||L2

J0(
√
x) 50 11 1.403 0.006 0.038 0.060 0.10

x3 − 4x2 + 3x 3 10 2.744 0.006 0.054 0.029 0.30
sin(x) 2π 7 2.000 0.007 0.010 0.036 0.07

1
1+25x2 1 8 0.962 0.001 0.002 0.001 0.029
e−x cos(2πx) 4 13 1.614 0.011 0.060 0.036 0.35

Figure 7: Effect of small perturbations in∆d’s on the reconstructed curve with 95% confidence interval: unequally spaced points.

7 Discussion

An important aspect of the proposed method is its ability
to flexibly accommodate different types of requirements while
maintaining smoothness. First, it exactly interpolates through
the equality data points, ensuring that the reconstructed curve
honors all available information. Second, it is capable of satisfying
inequality constraints, such as prescribed upper/lower bounds,
demonstrating its ability in incorporating additional problem
specific requirements. Third, the method consistently enforces
the given boundary conditions, whether Dirichlet or Mixed,
without having unnecessary oscillations near the boundaries.

Finally, by construction, the discrete biharmonic formulation
produces curves that are not only honor conditions at the data
points but also smooth, with continuity in the first derivative.
This combination of physical interpretability, interpolation,

constraint enforcement, boundary adherence and smoothness
makes the approach well suited for practical applications where
multiple conditions must be satisfied simultaneously.

From the NRMSE values in Table 1, we observe that the
maximum deviation of the reconstructed curves from the exact
functions is less than 1%. These results indicate that the proposed
discrete biharmonic approach provides a robust and highly
accurate method for curve reconstruction from the given data
points. The consistently low NRMSE values (e.g.,< 0.01) across
diverse test functions demonstrate strong global fidelity, showing
that the reconstructed curves are, on average, very close to the
exact curves.

Furthermore, small L∞ errors (e.g., < 0.06) provide evidence
of local stability, confirming that no significant localized
deviations or unwanted oscillations occur. This represents an
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improvement over classical high order polynomial interpolation,
which is known to suffer from instabilities such as the Runge’s
phenomenon.

The absolute error norms further demonstrate the accuracy of
the proposed method. The L2-errors remain small across all
tested functions, with values ranging between 0.001 and 0.060,
showing that the reconstructed curves are too close to the
originals in terms of global shape. In contrast, the derivative
errors are relatively larger (0.029–0.35). For instance, the
oscillatory function e−x cos(2πx) exhibits the highest derivative
error (0.35), while smoother functions such as 1

1+25x2 yield
much lower errors (0.029).

Further investigation in to the L2 norm of the derivative of the
proposed approach and the cubic interpolator over the same
FEM grid shows that for the first three functions both methods
have almost the same error values (L2 norm of the value as well
as derivative) where as for the last two cases the cubic spline has
large error values of 2.10 and 1.135 respectively.

The robustness of the proposed method was further
demonstrated through tests involving small perturbations to the
input data. By adding random noise to the sampled points, we
observed in Figs. 6, 7 that the largest deviation in the solution
are 0.008 and 0.06 for the case of equally spaced and unequally
spaced data points respectively. This shows the reconstructed
curves remained very close to the one obtained from the
unperturbed data.

The perturbation is introduced as follows. For each constraint dj ,
the maximum error magnitude Sj is first set to 2% of its given
value, that is, Sj = 0.02 |dj |. In this way, constraints with larger
absolute values are allowed to have proportionally larger absolute
errors.

In each trial k, the perturbation ∆d(k) is generated by
multiplying S elementwise by a random vector r, where
each component rj is drawn independently from a uniform
distribution over the interval [−1, 1]. Consequently, each entry
of∆d (say∆dj) lies within the range [−Sj , Sj ].

Table 2 quantifies this effect: across all considered functions, the
maximumdeviation (L∞) is below 0.12, themean absolute error
(MAE) remains around 0.02–0.04, and the normalized RMSE
(NRMSE) does not exceed 2.4%. This demonstrates that, rather
than amplifying measurement errors, the discrete biharmonic
formulation effectively smooths out minor fluctuations while
preserving the global shape of the curve. Importantly, the
absence of spurious oscillations in the perturbed reconstructions
confirms that the method can reliably handle imperfect or noisy
data, a feature that is crucial for practical applications where
measurement errors are unavoidable.

Table 2: Maximum norm, MAE, and NRMSE for the deviation
of the reconstructed curve from the original curve due to
perturbations in the data values; uniformly spaced data points.

f || · ||∞ MAE NRMSE (%)
J0(

√
x) 0.04 0.02 1.49

x3 − 4x2 + 3x 0.12 0.04 2.03
sin(x) 0.07 0.03 1.54

1
1+25x2 0.04 0.02 2.39
e−x cos(2πx) 0.06 0.02 1.50

Comparison with some known methods:
To further validate the efficacy of the proposed biharmonic
approach, we conducted a comparative analysis against
well-established interpolation and regressionmethods, including
Kriging, Radial Basis Function (RBF) interpolation, and
Gaussian Process Regression (GPR).

Specifically, Kriging and GPR are rooted in stochastic processes
and provide uncertainty quantification, while RBFs are
deterministic kernel-based interpolators. Figure 8 illustrates the
performance of these methods for data points sampled from
a known analytic function, considering both uniformly and
non-uniformly spaced sampling. A quantitative assessment of
the performance metrics, based on the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and maximum error
norms (L∞), is provided in Table 3.
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Figure 8: Comparison of the proposed approach in relation to
kriging, radial basis function and gaussian process regression
methods for points picked from e−0.1x sin(x)

(Top) and sin(x) (Bottom).

Effect of discretization size:

The effect of discretization size on the accuracy of the
reconstructed curve is illustrated in Fig. 9 for the functions
e−0.1x sin(x) and sin(x) , using uniformly spaced data points
as summarized in Table 3. For both examples, the error
metrics initially varywithmesh refinement but eventually reach a
plateau, indicating that the solution becomes nearly independent
of the discretization size. This flattening behavior demonstrates
that the reconstruction method attains numerical stability
beyond a certain resolution, and further mesh refinement yields
negligible improvement in accuracy.

Figure 9: Effect of mesh density (step size) on the proposed curve
reconstruction.

The conditioning of the discrete system was also examined
for grids ranging from 10 to 200 elements. The condition
number increased from approximately 103 on coarse meshes
to around 107 on the finest mesh. This behavior is consistent
with the theoretical properties differential operators, whose
discretizations naturally become more ill-conditioned as the
mesh is refined.

Despite these strengths, the accuracy of the proposed method
depends strongly on the distribution and density of input data
points. In sparsely sampled regions, the reconstructed curve
may fail to capture local variations, while closely spaced points
can induce localized oscillations due to strict enforcement of
pointwise constraints. Being deterministic, the method does not
account for data uncertainty or spatial correlations, which are
often important in spatial interpolation to leverage information
from neighboring observations.

Surface reconstruction case:
The scalability of the proposed approach to surface
reconstruction is illustrated in Fig. 10 with homogeneous
Dirichlet boundary condition and interior data point location
[(0.3, 0.2), (0.2, 0.7), (0.7, 0.2), (0.8, 0.63), (0.5, 0.7), (0.45,
0.45), (0.52, 0.61)] and the corresponding z values [0.2, 0.1,-0.23,
0.32, -0.2, -0.15, 0.12]. The computational domain is discretized
using the DUNE (Bastian et al., 2021) software, whereas the
weak form of the governing equations is approximated using the
Virtual Element Method (VEM) (Beirão da Veiga et al., 2013;
Brezzi & Marini, 2013). The Figure shows both the projection
of the reconstructed surface onto the xy-plane (left) and its
three-dimensional representation (right). Moreover, this surface
reconstruction approach has been applied to the estimation of
bedrock topography, as presented in (Bekele et al., 2025), with
additional results forthcoming.

Figure 10: Surface reconstruction from a given set of data points
using the extension of the proposed approach.
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Table 3: Error comparison for the two functions under uniform and non-uniform sampling illustrated in Fig. 8.

Example Data Type Method MAE RMSE Max Norm

Ex1:
sin(x)e−0.1x

x ∈ [0, 11]

Uniform (12 pts) Kriging 0.0086 0.0180 0.0778
RBF 0.0031 0.0065 0.0294
GPR 0.0040 0.0085 0.0370
Proposed 0.0007 0.0010 0.0029

Non-uniform Kriging 0.0390 0.0583 0.1702
RBF 0.0052 0.0088 0.0245
GPR 0.0084 0.0140 0.0388
Proposed 0.0058 0.0092 0.0251

Ex2:
sin(x)
x ∈ [0, 2π]

Uniform (8 pts) Kriging 0.0141 0.0206 0.0509
RBF 0.0034 0.0052 0.0127
GPR 0.0058 0.0088 0.0223
Proposed 0.0007 0.0009 0.0022

Non-uniform Kriging 0.1240 0.2113 0.5141
RBF 0.0338 0.0470 0.1031
GPR 0.0878 0.1305 0.2992
Proposed 0.0262 0.0366 0.0793

8 Conclusion

In this paper, we introduce a method for reconstructing curves
based on a discrete version of the biharmonic equation. Our
approach generates globally C1 smooth curves that adapt
naturally to various types of data and boundary conditions. It
interpolates exact measurements while also enforcing inequality
constraints, such as prescribed upper and lower bounds.
Through experiments with both uniform and irregular data
distributions, we found that the method consistently produces
stable, oscillation free curves. This is particularly valuable
in practical scenarios, where data are often sparse, noisy, or
unevenly sampled. In addition, themethod is flexible in handling
both Dirichlet and Mixed boundary conditions.

Another significant strength lies in its physical interpretability:
the biharmonic equation mimics the behavior of thin
elastic beams or plates, providing an intuitive link between
mathematical smoothness and physical phenomena.

Finally, the method naturally extends to higher dimensions,
offering promise for applications such as surface reconstruction
in geosciences, including bedrock topography estimation.
Overall, this demonstrates the broader potential of the approach
and opens pathways for future work, including integration of
additional data sources and uncertainty quantification.
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