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ABSTRACT 

This paper presents mechanical strength analysis and optimization of the critical components 

of the plunger pump. Due to the uneven stress distribution and high contact pressure created 

between the contacting surfaces the v-packing seals and the PTFE cup were subjected to failure. 

During the analysis of stresses, the critical components that are considered as a tri-layer 

compound cylinder such as the assembly of suction tube, PTFE cup, and the check seat and the 

assembly of plunger, v-packing seals and the spacer tube were analyzed based on the lame’s 

equation of compound cylinders. The materials that are used for making these components were 

316 stainless steel and polytetrafluoroethylene or Teflon that are ductile in nature. The failure 

criteria’s which are adopted in this analysis was the maximum shear stress /Tresca criteria and 

the von-misses criteria’s. To optimize the stress distribution in the compound cylinders a 

classical Lagrangian multiplier method was adopted based on the maximum shear stress theory. 

The analytically calculated result was compared with the finite element ANSYS simulation 

software and results from the optimization technique shows that the uneven stress distributions 

were optimized. 

Keywords: plunger pump, thick-walled cylinder, tri-layer compound cylinder, stress analysis, 

Lagrangian multiplier optimization. 

1. Introduction 

Pumps are mechanical devices used to move fluids from one place to another by converting 

mechanical energy into hydraulic energy. The prime movers of a pump are: an electric motor, 

engines, manual power, and etc. Pumps can be classified into two main broad categories, those 

are: positive displacement pumps and non-positive displacement pumps. Positive displacement 

pump causes a fluid to move by trapping a fixed amount of it then forcing or displacing that 

trapped volume into the discharge pipe or a positive displacement pump has an expanding 

cavity on the suction side and a decreasing cavity on the discharge side. Liquid flows into the 

pump as the cavity on the suction side expands and the liquid flows out of the discharge as the 

http://www.journals.hu.edu.et/hu-journals/index.php/ejet/index
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cavity collapses. Positive displacement pumps can be classified into rotary positive 

displacement pumps and reciprocating positive displacement pumps. In the suction stroke the 

plunger is pulled back, the suction valve opens and the cylinder fills. In the discharge cycle, the 

plunger moves back, the suction valve closes and the discharge valve opens to deliver fluid. 

Reciprocating pumps are used for dosing purposes because they are used to move a precise 

amount of fluid in a specified time period providing an accurate flow rate. Because the head-

flow is too shallow peristaltic pumps and centrifugal pumps cannot be used for dosing 

applications since a small change in differential head/pressure produces a change in the fluid 

flow (Richard, 2006).  

The bottom end of the plunger pump which contains the essential components of the pump is 

susceptible to failure. Main components of the bottom end of the pump are: suction tube, PTFE 

cup and check seat. Among the different kind of failures encountered on the bottom end of the 

plunger pump, failure of the PTFE cup is the major one. Polytetrafluoroethylene (PTFE) is 

widely used as wear resistant material because it has excellent low friction coefficient when it 

slides against a metal surface but, the wear rate of PTFE is unacceptably high without filling 

modification. The sub-assemblies of the bottom end of the plunger pump may be considered as 

tri-layer compound cylinders. The other stress which has an effect on the compound cylinder is 

the contact pressure. Contact pressure is created between two cylinders in surface to surface 

contact. Wear of material during sliding occurs due to the high contact pressure created between 

the two contacting surfaces.  

Plunger pumps used for dosing paints to the fabrics at the Bahir Dar textile factory, which is 

located in Bahirdar city, Ethiopia are subjected to failure because of the v-packing seals and 

PTFE cup. Such a failure of the critical components leads to loss of efficiency of the pump and 

downtime in the industrial machines. Therefore, this study is to analyze and optimize the 

assembly of check seat, PTFE cup and suction tube assembly. 

2. Literature Review 

2.1. Failures of plunger pump components. 

Under maximum pressure plunger seals fail and their service life decreases. Sealing rings are 

failed due to stress concentration, contact pressure and the uneven distribution of stresses. And 

the root reason for the failure of the sealing rings is the inadequate sealing ring structure design 

(Zhou et al., 2014). The influence of friction created between the seal and the road leads to 

leakage of a hydraulic system. Once the leakage exceeds the predefined value, the seals are 
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regarded as failure (Xin Li et al., 2015). Sealing performance and lifetime are depended greatly 

on the contact pressure and its distribution of the lip. Magnitude of interference is the only way 

to create contact pressure. Too much interference will result in immoderate drawing and serious 

wear on the seal lip, while too less will result in leakage (Priit and Andersson, 1999; Zibo et al., 

2010; Kaufmann, 2018).  

2.2. Shrink-fitted compound cylinders 

During the shrink fitting of one cylinder over the other a contact pressure will be developed 

between each layer of the cylinder (Yuan, 2010; Vincenzo, 2014). The value of interference 

between the shrink fitted cylinders must have to be optimum. When the interference is 

maximum there will be a higher contact pressure developed between the cylinders leading to 

wear of the material (Priit and Andersson, 1999). Designing a shrink fit assembly is tricky 

because the stress developed in the cylinders is a function of internal fluid pressure, shrinkage 

pressure and the dimensions of the cylinders. Also the shrinkage pressure is a function of the 

amount of interference and dimensions of the cylinders.to compute the stresses inside 

compound cylinders, dimensions of the cylinders must be known (Sunil and Patil, 2005). A tri-

layer compound cylinder is made by shrink-fitting three cylinders together.  

 

Figure 2.1: Tri-layer compound cylinder. 

As shown in the above Figure 2.1 the shrinkage/contact pressure is developed between layer 1 

and layer 2. And between layer 2 and layer 3 (Hamid, 2005). Inducing the residual compressive 

stress in these cylinders can improve significantly their capacities such as increasing the 

working pressure and/or fatigue life. Shrink-fitting techniques are used for increasing the 

compressive residual stress values and regions in the cylinders wall. The effects of induced 

tensile stresses due to the working pressure can be decreased by these compressive stresses. 

(Rahman, 2018) Mojtaba Sharifi (2012) stated that a new analytical solution for the optimum 

design of shrink-fit multi-layer compound cylinders (Mojtaba and Hematiyan, 2012). This 

paper presents the optimum design of a multilayer compound cylinder by using analytical 

optimization technique. Rahman (2018) revealed that maximizing working pressure of 

autofrettaged three-layer compound cylinders with considering Bauschinger effect and reverse 
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yielding (Rahman, 2018). This study mainly focused on the effect of interference fit values and 

autofrettage pressures on three-layer compound cylinders and to design a three-layer compound 

cylinder by using the combination of shrink-fitting and autofrettage processes to analyze this 

compound cylinder, lame’s equation was adopted (Maleki et al., 2010). Residual stress analysis 

of autofrettaged thick-walled spherical pressure vessel (Farrahi et al., 2010).  

This paper studies the residual stress distribution in autofrettage spherical pressure vessels 

subjected to different autofrettage pressures. Behrooz Farshi et al, (2005), Optimum 

Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders (Hamid, 2005). This paper 

presents a combined shrink fitting and autofrettage of compound cylinders, and the optimum 

values of the layer thicknesses shrink fitting pressures and autofrettage percentages were 

determined with the proper sequence of steps. Bahoum et al (2016), Stress analysis of 

compound cylinders subjected to thermo-mechanical loads (Kaoutar et al., 2016). This research 

focuses on the resulting stresses and displacement fields in two-layer compound cylinders 

subjected to internal pressure and logarithmic radial temperature distribution was presented. 

Ossama and Abdelsalam (2013), Design Optimization of Compound Cylinders Subjected to 

Autofrettage and Shrink-Fitting Processes (Ossama and Abdelsalam, 2013).  

The objective of this study was to identify the optimal configuration of a two-layer compound 

cylinder subjected to a different combination of autofrettage and shrink fitting and o find out 

the optimal thickness of each layer, autofrettage pressure, and radial interference. Onur Güngor 

(2017) an approach for optimization of the wall thickness (weight) of a thick-walled cylinder 

under axially non-uniform internal service pressure distribution (Onur, 2017). In this study, the 

mandrel-cylinder tube was renovated by using the constrained optimization method. Wall 

thickness of the cylinder was optimized to achieve the specified safety factor along the length 

of the cylinder. Shabana et al. (2017), Stresses minimization in functionally graded cylinders 

using particle swarm optimization technique (Yasser et al., 2017). In this research work, 

minimization of the induced stress in functionally graded cylinders due to pressure loading is 

carried out considering plane stress geometric condition. Majzoobi et al. (2004), Experimental 

and finite element prediction of bursting pressure in compound cylinders (Majzoobi et al., 

2004). This paper presents compound cylinders with different diametric interfaces and various 

shrinkage radii subjected to bursting and autofrettage pressures.  

2.3. Optimization techniques for compound cylinders 

In the optimization of the compound cylinders the design variables are the internal and external 

pressures, thickness of each layer, the autofrettage pressures at the inner surfaces, the 

autofrettage pressures at the outer surfaces (if any), and the radial interference for shrink-fitting 
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(Kaoutar et al., 2016). Stresses at each point of cylinders can be calculated using the relations 

of the stress in thick-walled cylinders in terms of inner and outer pressures of each cylinder. 

Maximum shear stress and its position can be obtained according to Tresca’s yield criterion and 

using Mohr circle (because the material is ductile). The general formulation for optimum design 

of compound cylinders using in direct and Lagrangian optimization technique (Mojtaba and 

Hematiyan, 2012). Compound cylinders can be optimized based on the Simplex procedure of 

Nelder and Mead, which does not require any gradient evaluation of the life function, treated 

as the objective. The simplex procedure of optimization technique has good efficiency for a 

three-layer compound cylinder (Hamid, 2005). generally, from the above literatures it has been 

inferred that the dosing pump components were not analyzed by assuming the as a compound 

cylinders. Therefore, this study assumes the assembly of the components as compound 

cylinders uses the lames equation for the analysis and Lagrangian multiplier method to optimize 

the dosing pump critical components.  

3. Materials and methods 

The following figure shows the flow chart for the analysis of the plunger pump components 

(Figure 3.1). 
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Figure 3.1: flow chart for the analysis of the plunger pump components 

3.1. Materials and geometry 

Plunger, check sit and the cylinder in the plunger pump are assembled using the force fitting or 

shrink fitting techniques. The sub-assembly of the plunger pump containing the cylinder and 

the plunger as shown in the following figure 3.2 may be treated as a tri-layer compound cylinder 

formed by shrinking or by force-fit techniques. 

 

Figure 3. 2: assemblies of check seat,PTFE cup, and suction tube 

The dimensions were measured using vernier caliper from the dosing pump located at Bahir 

Dar textile factory and the three-dimensional geometrical modeling were done on solid works. 

The maximum operating pressure and the mechanical properties of the components are taken 

from the plunger pump manual located at this particular company. The material used for the 

cylinder and the plunger is 316 stainless steel and the properties are taken from standard 

Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for 

Pressure Vessels and for General Applications ASTM A240/A240M. For the PTFE cup, ASTM 

D3294-15 is used to characterize the physical properties of polytetrafluoroethylene.  

3.2. Analysis of check seat, PTFE cup and suction tube assembly by using the Lame’s 

equation  

To analyze the stresses, the lames equation can be used. From the lame’s theory when the ratio 

of the thickness to the inside diameter of the cylinder is greater than 1/20, the cylinder is called 

a thick cylinder. The longitudinal stress is neglected since the cylinder is an open cylinder.  In 

this analysis, the cylinder is considered as thick because the ratio is greater than the above-

mentioned number. Thick cylinders can be treated by using the lame’s equations as shown 

below:  

Ur,out/r=r2 =
Pir2

3(1−v1)

E1(r1
2−r2

2)
−

Pir1  
2 (1+v1)

E1(r1
2−r2

2)
………………………………………………...............….3.1 

Ur,in/r=r2=
−Pir2

3+Piir2r3
2(1−v2)

E2(r2
2−r3

2)
+

(−Pi+Pii)r2r3
2(1+v2)

E2(r2
2−r3

2)
…………......................................................3.2 



263 
 

Ur,out/r=r3=
(−Pir2

2r3+Piir3
3)(1−v2)

E2(r2
2−r3

2)
+

(−Pi+Pii)r3r2
2(1+v2)

E2(r2
2−r3

2)
……………………………..……........…3.3 

Ur,in/r=r3=
Piir3

3(1−v3)

E3(r3
2−r4

2)
−

Piir3r4
2(1+v3)

E3(r3
2−r4

2)
……………………………………………....…………....3.4 

For the nested thick-walled cylinders the interference of the inner and outer contact pairs can 

be determined using the displacement coordination of the corresponding cylinders on the 

contact surfaces. 

Ur,out /r=r2 -Ur,in/r=r2=δi    ………………………………………………………………….….3.5 

Ur,out/r=r3 -Ur,in/r=r3=δii      …………………………………………………………….…….….3.6 

By substituting the radial displacements in equation 1, 2,3and 4 into the displacement 

coordination we can obtain the contact pressure.        

Radial and hoop Stress in cylinder 1(check seat) 

From the lame’s equation, the hoop stress in cylinder one is given by: 

σθ =
Pr4

2−r3
2Pii

(r3
2−r4

2)
+

r4 
2 r3  

2 (P−Pii)

r2(r3
2−r4

2)
…………………………………………………….………….3.7 

And the radial stress is obtained by the following formula: 

σr =
Pr4

2−r3
2Pii

(r3
2−r4

2)
−

r4 
2 r3  

2 (P−Pii)

r2(r3
2−r4

2)
 …………………………………………………………….....3.8 

Where r is any radius in which the hoop and radial stresses can be found 

Radial and hoop stress in cylinder 2 (PTFE cup) 

In cylinder 2 contact pressure Pii is acting as an internal pressure and Pi is acting as an 

external pressure. Using the lames equation, radial stress in cylinder 2 at inner radius r3is 

given by 

𝜎𝑟3 = -Pii…...............................................................................................................................3.9 

And the radial stress in cylinder 2 at the outer radius r2 is ; 

σr2= -

Pi………………………………………………………………….………………………...3.10 

The hoop stress in cylinder 2 at the outer radius r2 is given by: 

σθma =
Pii(r2  

2 +r3  
2 )

(r2
2−r3

2)
−

2Pir3  
2

(r2
2−r3

2)
………………...........................................................................3.11 

Hoop stress in the cylinder 2 at the inner radius r3 
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σθ =
2Piir3  

2

(r2
2−r3

2)
−

Pi(r2  
2 +r3  

2 )

(r2
2−r3

2)
………………………………………....………………………....3.12 

Radial and hoop stress in cylinder 3(suction tube) 

Contact pressure Pi is acting as internal pressure on cylinder 3 and external pressure Po is 

zero. Therefore the radial stress in the cylinder 3 at the inner radius r2 is given by: 

σr= -Pi…................................................................................................................................3.13 

Hoop stress in the cylinder 3 at the inner radius r2 is given by  

σθmax =
Pi(r1  

2 +r2  
2 )

(r1
2−r2

2)
…..............................................................................................................3.14 

Hoop stress in the cylinder 3 at the inner radius r1 is given by 

 σθ =
2Pir3  

2

(r1
2−r2

2)
…………………………………………………….……………………..……3.15 

The hoop stress at any radius r in the compound cylinder due to internal pressure only is given 

by 

σθ =
Pr4

2

(r1
2−r4

2)
[1 +

r4
2

r2]…………………………………………………………………….3.16 

Where P is the internal pressure and r is any radius. 

Resultant hoop stress in cylinder1 

Maximum hoop stress at the inner surfaces of cylinder 1 at r4 

σθ1 =
P(r1  

2 +r4  
2 )

(r1
2−r4

2)
−

−2Piir3  
2

(r3
2−r4

2)
……………………………………………………………….3.17 

Resultant hoop stress in cylinder 2 

σθ2 =
Pr4  

2 (r1  
2 +r3  

2 )

r3  
2 (r1

2−r4
2)

+
Pii(r2  

2 +r3  
2 )−2Pir2  

2

(r2
2−r3

2)
…...........................................................................3.18 

Resultant hoop stress in cylinder 3 

σθ3 =
Pr4  

2 (r1  
2 +r2  

2 )

r2  
2 (r1

2−r4
2)

+
Pi(r1  

2 +r2  
2 )

(r1
2−r2

2)
…………………………………………………………….3.19 

3.2. 1.The failure theories 

Failure of solid materials under the action of external loads can be predicted using the science 

of failure theories. Usually, the failure of a material can be classified into brittle failure/ fracture 

and ductile failure /yield. depending on the varies conditions including the state of stress, 

temperature, loading rate and etc. in most practical cases a material may fail under brittle or 
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ductile or both (Khurmi and Gupta, 2005). The failure theories which are mostly used for ductile 

materials are: Maximum shear stress (MSS) and Distortion energy (DE). 

 

Tresca criteria: 

For thick cylinder design, the Tresca (maximum shear stress) criterion is normally used for 

ductile materials. The maximum shear stress at the yield in tension is equated to the maximum 

shear stress in the cylinder wall 

𝜏𝑚𝑎𝑥 =
𝜎𝑦

2
, the maximum shear stress is at the inside radius.                                            

 𝜏𝑚𝑎𝑥 =
𝜎𝜃−𝜎𝑟

2
, for cylinder failure 

𝜎𝑦

2
=

𝜎𝜃−𝜎𝑟

2
 …………………………………….…3.20 

Where𝜎𝜃, 𝜎𝑟 𝑎nd𝜏𝑚𝑎𝑥 are the maximum hoop stress, radial sress and maximum shear stress 

respectively.   

Von Mises criteria: The Von Mises theory (distortion-energy theory) predicts that yielding 

occurs when the distortion strain energy per unit volume reaches or exceeds the distortion strain 

energy per unit volume for yield in simple tension or compression of the same material 

Sy ≤ [
(𝜎𝜃−𝜎𝑟)2+(𝜎𝑟−𝜎𝑙)2+(𝜎𝑙−𝜎𝜃)2

2
]

1

2
 ……………………………………………………..3.21 

In the Von-Mises criteria yield would occur when σ ≥ Sy 

Table 3.1: Input parameters for the subassembly of plunger and cylinder 

Name of components  Cylinder 1 

(suction tube) 

Cylinder 2( ptfe cup) Cylinder 3 

(check seat) 

Materials  316 stainless steel polytetrafluoroethylene 316 stainless 

steel 

Inner radius 23.25mm 19.7mm 10.35mm 

Outer radius 26.8mm 23.4mm 19.8mm 

Youngs modulus 1.93e5Mpa 1.5e3Mpa 1.93e5Mpa 

Poissons ratio 0.31 0.41 0.31 

Tensile yield strength 205 MPa 48.23MPa 250 MPa 

Interference between cylinder 1 and cylinder 2 0.1mm   

Interference between cylinder 2and cylinder 3  0.15mm  

Maximum operating pressure 4.14Mpa   
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Figure 3.3: Assembly of check seat,PTFE cup, and suction tube. 

3.2.2. Evaluation of stresses using analytical technique and finite element ANSYS simulation software 

 

 

 

 

 

 

 

Figure 3.4: Contact pressure distribution 

Table 3.3: Maximum hoop stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  

classical  ANSYS  classical  ANSYS classical  ANSYS 

72.495  81.966  22.035  23.487  14..063  11.792  

Table 3.2:.The contact pressure between cylinders in MPa 

 Analytical  Simulation  

Pii 7.142 7.934  

Pi 9.549 10.007 
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Figure 3.5: Maximum hoop stress 

Table 3.4.Maximum shear stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  

classical  ANSYS classical  ANSYS classical  ANSYS 

41.2493MPa  40.623  12.67MPa  14.508  10.6MPa  11.607  

 

 

Figure 3.6: Maximum shear stress 

Table 3.5:Von Mises  stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  

classical  ANSYS classical  ANSYS classical  ANSYS  
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78.163  73.18  28.056  32.52  18.631  16.27  

 

 

Figure 3.7: Equivalent Von Mises stress 

 

3.3. Optimization of the suction tube, PTFE cup, and check seat assembly 

During the optimization of a shrink-fitted compound cylinder using the maximum shear stress 

theory as a design criterion assuming that the inner and outer radii of the multi-layer cylinder 

and material of each layer are known. The optimization mathematical model was built and 

Lagrangian multiplier method the model was used to optimize the components. In this analysis, 

the optimum design formula of the wall ratio “Km” of each layer of the multi-layer cylinder are 

obtained based on the superposition principle and optimum shrinkage pressure as well as radial 

interference were also derived and the stress distribution in each layer is analyzed.  

Lame’s equation can be written by using the wall ratio K, where K is the ratio of outer of the 

outermost cylinder to inner radii of the innermost cylinder. Substituting the wall ratio into the 

principal stress components the hoop and radial stresses will be re-written as follows (Yuan, 

2010) 

σθ =
(P−Pii)k 

2

(k2−1)
+

ri 
2k  

2(P−Pii)

r2(k2−1)
....................................................................................................................3.22 

σr =
(P−Pii)k 

2

(k2−1)
−

ri 
2k  

2(P−Pii)

r2(k2−1)
……………………………………………….……….….……….…….…3.23 

Where ri is the interference between the two layers and it is given by ri =di/2, and r is the arbitrary 

radius. The maximum shear stress 𝜏𝑚𝑎𝑥 is given by 
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  𝜏𝑚𝑎𝑥 =
𝜎𝜃−𝜎𝑟

2
 = 

ri 
2k  

2(P−Pii)

r2(k2−1)
…………………………………………………………….…………....3.24 

3.3.1. Building the Mathematical Model of Optimum Design 

3.3.1.1. Assumptions 

It is assumed that the inner and outer diameters of the vessel are known, that the yield stress of each layer is also 

known, and the assembly sequence in each cylinder is consecutive from inside to the outside of shrink-fitting. 

3.3.1.2. Optimum mathematical model 

For Ultra-high pressure vessels usually made of the plastic material and alloy steel it is generally thought that 

failure mode is plastic yield. Therefore, the maximum shear theory for the design criteria. According to the 

maximum shear theory. 

   𝜏𝑚𝑎𝑥 =
𝜎𝑠

2
……………………………………………………………………………………….…….3.25 

 Eq. (3.24) shows that shear stress changes only in accordance with a pressure difference between the inner wall 

and an outer wall, and the shear stress has no relation to the absolute value of pressure. When the pressure 

difference of a vessel is defined, shear stress in the inner wall is maximal, i.e., the dangerous section is in the inner 

wall of each cylinder. The optimal design of multi-layer vessels requires the maximum use of materials and gives 

full play to the characteristics of the materials. With the increase of pressure, the shear stress of each layer reaches 

its shear yield limit, and each layer of cylinder fails at the same time. According to the above requirements and in 

the utmost limit, the shear stress of the inner wall of layer m can be written as   

 𝜏𝑚𝑎𝑥 =
𝜎𝑠

2
=

ri 
2k  

2(P−Pii)

r2(k2−1)
 ……………………………………………………………………………….…3.26                                            

According to the assumption, K is a constant, so multi-layer shrinkage vessels have optimization problems as 

follows 

 ∏ 𝑘𝑚 = 𝑘𝑛
𝑚=1  ………………………………………………….………………………………….….…3.27 

3.3.2. Lagrangian multiplier method 

The basic idea of this optimization technique is to turn the equality constraint into non-

constraint. This paper uses the Lagrange multiplier method, taking λ as Lagrange multipliers, 

and 𝜎𝑠 as a constant. During the optimization of a shrink-fitted compound cylinder using the 

classical Lagrangian multiplier method based on the maximum shear stress theory as a design 

criterion the following assumptions were taken into account: 

 The inner and outer diameters of the vessel are known 

  The yield stress of each layer is also known 

  Material of each layer were known 

   the internal pressure is constant 
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Optimum geometry for the assembly of suction tube, PTFE cup and check seat in this way, the 

above-mentioned problems can be transformed into the extremum problems as the following 

equation: 

 𝐿 =
1

2
∑ 𝛼𝑚

𝑛
𝑚=1

(𝑘𝑚
2 −1)

  

𝑘𝑚
2  +λ (∏ 𝑘𝑚 = 𝑘𝑛

𝑚=1 )……………………………………………………………...3.28 

                               
əL

ə𝑘𝑚
2 =    𝛼𝑚  

1  

𝑘𝑚
3  + λ

K  

𝑘𝑚
2 = 0 

                 
əL

əλ
= ∏ 𝑘𝑚 = 𝑘𝑛

𝑚=1 = 0 

To solve the system of nonlinear, we find the optimal solution of km as: 

 Km =(
𝛼1𝛼2𝛼3………………𝛼𝑁

𝛼𝑚
)

1

2𝑁
𝛼𝑚

𝑁−1

2𝑁  𝐾
1

𝑁       𝑚 = 1,2,3 … … 𝑁 …….3.29 

                 𝑘1 = (𝛼2𝛼3)
1

6 𝛼1

2

6𝑘
1

3 

               𝑘2 = (𝛼1𝛼3)
1

6 𝛼2

2

6𝑘
1

3  

               𝑘3 = (𝛼1𝛼2)
1

6 𝛼3

2

6𝑘
1

3  

The contact pressure between cylinder 1 and 2 is given by: 

 𝑝𝑖 = (𝑃 −
𝜎𝑠

2

𝑘1
2−1

𝑘1
2 )….......................................................................................... .....................................3.30 

The contact pressure between cylinder 2 and 3 is given by: 

  𝑝𝑖𝑖 = (𝑃 −
𝜎𝑠

2

𝑘2
2−1

𝑘2
2 )……………………………………………….……………………………………3.31 

When we shrink-fit layer 1 to m into layer m+1, we can take the layer 1 to m as an inner cylinder, and take m+1 

layer’s outer cylinder. Therefore, the radial interference pressure between layer m and layer m+1 can be written as 

 δ = 𝑟𝑚𝑝𝑚 (
(𝑘𝑚+1

2 +1)
  

𝐸𝑘𝑚+1
2 −1

+
∏ 𝑘𝑚

2 +1𝑛
𝑚=1

𝐸 ∏ 𝑘𝑚
2𝑛

𝑚=1 −1
)…..................................................................................................3.32 

Therefore, the interference between cylinder 1 and cylinder 2 is given by: 

 δ𝑖 = 𝑟2𝑝𝑖 (
(𝑘1

2+1)
  

𝐸1(𝑘1
2−1)

+
𝑘2

2+1

𝐸2(𝑘2
2−1)

) ………… …………………………………………………………….3.33 

The interference between cylinder 2 and cylinder 3 can be given by: 

 δ𝑖𝑖 = 𝑟3𝑝 (
(𝑘3

2+1)
  

𝐸3𝑘3
2−1

+
𝑘2

2+1

𝐸2(𝑘2
2−1)

)…..............................................................................................................3.34 

Table 3.6. Optimum geometry for the assembly of suction tube,PTFE cup and check seat 

   Cylinder 1 (suction tube) Cylinder 2 ( PTFE cup) Cylinder 3 (check 

seat) 

  316 stainless steel polytetrafluoroethylene 316 stainless steel 

Inner radius 24.2 16.11 10.35 
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Outer radius 26.8 24.25 16.15 

Interference between cylinder 1 and  2 - 0.08 - 

Interference between cylinder 2and  3 0.11 - - 

 

3.4. Evaluation of stresses by using analytical technique and ANSYS simulation software 

Table 3.7.Contact pressure between cylinders in MPa 

 

 

 

 

 

Fig 3.8.Contact pressure distribution 

                            

  

 

 

 

   Analytical  ANSYS 

Pi  4.78  4.48  

Pii  2.56  2.49  

Table 3.8.Maximum hoop stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  

Analytical  ANSYS   Analytical  ANSYS Analytical  ANSYS 

21.7  19.58   7.1  6.68  26.7  28.19  
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Fig 3.9.Maximum hoop stress distribution 

 

 

Table 3.9. Maximum shear stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  

Analytical  ANSYS Analytical  ANSYS  Analytical  ANSYS 

12.96  11.87  4.83  4.46  15.74  13.54  

 

 

Fig 3.10.Maximum shear stress distribution  

Table 3.10. Von -Mises  stress in MPa 

In Cylinder 1  In Cylinder 2  In Cylinder 3  
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Analytical  ANSYS Analytical  ANSYS  Analytical  ANSYS 

24.08  24.99  8.67  9.37  29.38  28.12  

 

 

Fig 3.11.Equivalent von-Mises stress distribution 

 

 

4. Results and Discussions 

Comparing the optimized value with that of non-optimized compound cylinder yields the 

following results. 

Table 4.1: Comparisons of optimized contact pressure with the existing contact pressure 

 

 

 

 

 

As it can be seen from table 4.1. The contact pressure has been reduced. This implies that when 

the contact pressure between two contacting surfaces is low, the vulnerability to wear will also 

be reduced. Figure 4.1 showed the distribution of contact pressure versus interference graphs 

which has both optimum and non-optimum values. As we can see from the figure the optimized 

value of contact pressure is lower than the non-optimized value of the contact pressure. 

  Non-optimized optimized 

Analytical Pi 7.142 2.56 

Pii 9.549 4.78 

ANSYS Pi 7.934 4.48 

Pii 10.007 2.49 
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Figure 4.1: Interference versus contact pressure distribution Graph 

The hoop stress or the stress along the tangential direction is optimized as shown in the 

following Table 4.2.  From the tabulated result one can understand that the hoop stresses are 

distributed optimally in the three cylinders. 

Table 4.2: Comparisons of optimized maximum hoop stress with the existing hoop stress 

 In Cylinder 1 In Cylinder 2 In Cylinder 3 

 non-optimum Optimum non-optimum Optimum Non-optimum Optimum 

Analytical 72.495 21.7 22.035 7.1 14..063 26.7 

Ansys 81.966 19.58 23.487 6.68 11.792 28.19 

 

The tabulated results of the optimum and non-optimum values were compared in the thickness 

versus hoop stress graph as shown in figure 4.2. As we can see from the graph the distribution 

of hoop stress in the non-optimized assembly was not optimum and we can see that the stresses 

are not distributed optimally in the non-optimized compound cylinders. But we can see that the 

hoop stress distribution in the optimized compound cylinder is smoothly distributed. 

 

Figure 4.2: thickness versus hoop stress graph 

Based on the maximum shear stress theory the following shear stress result has been found. We 

can see that the effect of shear stress on the compound cylinders have been improved or its 

effect is distributed in the three cylinders (Table 4.3).      

Table 4.3: comparisons of optimized shear stress with the existing shear stress 
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 Cylinder 1 Cylinder 2 Cylinder 3 

 Non-optimum Optimum Non-optimum Optimum non-optimum Optimum 

Analytical 41.24 12.96 12.67 4.83 10.6 15.74 

Ansys 40.62 11.87 14.51 4.46 11.6 13.54 

 

 

Figure 3.14: thickness versus shear stress graph 

 

Comparison of shear stress versus thickness shows that there was uneven shear stress 

distribution in the assembly (Figure 4.3). From this graph we can see that the shear stress 

distribution in the non-optimized cylinder was higher and also its distribution was not smooth. 

The optimized compound cylinder has a good distribution of shear stresses along the thickness. 

Table 4.4: comparisons of optimized von Mises stress with the existing von Mises stress 

 In Cylinder 1 In Cylinder 2 In Cylinder 3 

 non-optimum Optimum non-optimum Optimum non-optimum Optimum 

Analytical 78.163 24.08 28.056 8.67 18.631 29.38 

Ansys 73.188 24.99 32.528 9.37 16.27 28.12 

 

As we can see in table 4.4, the values of the optimized and non-optimized for the cylinders are 

tabulated.it can be seen that the value of von-misses stress is reduced in the optimized cylinders. 

Figure 4.4 showed the distribution of von-misses stress versus thickness of the cylinders.as we 

can see from the graph the von-misses’ stresses distribution in the non-optimized cylinder is 

not smooth as compared to the optimized ones. 

 



276 
 

 

Figure 4.4: Thickness versus Von-Mises stress graph 

5. Conclusion   

During the mechanical strength analysis of the plunger pumps critical components, the bottom 

end of the pump was which constitutes the suction tube, PTFE cup, and check seat were 

assumed as a shrink-fitted tri-layer compound cylinders and the analysis were done by using 

the lame’s theory of compound cylinders. From the analysis it can be concluded that during the 

assembly of the shrink-fitted compound cylinders the value of the interference between the 

cylinders has a great role. As we can see from the non-optimized compound cylinders the PTFE 

cup were damaged because of the higher contact pressure created during the sliding of the 

plunger. The cause of this higher contact pressure is the value of the interference given to 

prevent the leakage of fluid. During the optimization of the sub-assemblies of the plunger pump 

the value of the interference between the shrink fitted compound cylinders and the thickness 

were optimized and a good result was obtained as compared to the non-optimized compound 

cylinders. 
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