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Abstract.

Cutting tools management is one of the main issues in metal cutting operations. This
important problem has not been adequately studied in the past. Most of the problems in
cutting tools management were addressed using optimization techniques. This study proposed
a decision support system (DSS) to articulate this problem by combining artificial
intelligence (Al) and multiple attribute decision-making (MADM) tools. The proposed DSS
retrieves the most similar historical cases to adapt their cutting tool requirements to the
current part orders. The DSS integrates case-based reasoning (CBR), rule-based reasoning
and fuzzy set theory (FST) in Al. It uses the analytic hierarchy process (AHP) and distance
from target methods of multiple-attribute decision-making (MADM) in decision analysis.
Cases were represented using an Object-Oriented (OO) approach to characterize cases for
their tool set requirements. A numerical example was illustrated to show the soundness of the
proposed methodological approach.

Keywords: Decision support systems, case-based reasoning, analytic hierarchy
process, fuzzy set theory, cutting tool planning.

1. Introduction

The next generation of manufacturing (Industry 4.0) is characterized by frequent changes of
production requirements such as flexibility, responsiveness, improved quality of products
and efficient utilization of resources. Cutting tools are one of the major components for
metal cutting industries to meet these requirements. Managing the flow of these components
is as significant as managing the flow of parts in flexible manufacturing systems (FMS)
(Gray et al., 1993; Rahimifard and Newman, 1997; (")zbayrak and Bell, 2003). Gray et al.
(1993) and Rahimifard and Newman (2000) suggested that tool management strategies
should be integrated with system design, planning and control activities to improve resources
utilization and reduce operational costs. Cutting tools can contribute to 25-30% of the total
operating costs (Gray et al., 1993; Buyurgan et al., 2004; Rahimifard and Newman, 1997). In
order to address this problem, several studies were proposed in the past. These were
reviewed in different studies (Buyurgan et al., 2004; Gray et al., 1993; Meseguer and
Gonzalez, 2008). These proposed tool-planning approaches were based on linear and
nonlinear optimization techniques, heuristics and domain knowledge-based expert systems.
Optimization models are computationally intractable as the number of input variables
increases. Heuristic algorithms are unable to find the global optimum solution. In rule-based
expert systems, it is monotonous to represent the complex domain knowledge from experts
in the form of rules alone (Aamodt and Plaza, 1994; Kolodner, 1992 ).
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In addition, these previous methods are static in nature to accommodate knowledge
uncertainties and imprecisions in dynamic situations where much is unknown and solutions
are open-ended. In reality, tool assignment and control problems are unstructured and open-
ended. Recent studies revealed that only about 20 percent information circulates in terms of
structured and numeric data in companies; however, the remaining 80 percent information is
hidden in unstructured forms (Tseng and Chou, 2006; Feki et al., 2013). The right part-
cutting tools assignment strategies need to be flexible, simple and compressive to integrate
both structured and unstructured data. These kinds of flexible, integrative, simple and
comprehensive systems are strongly recommended in the Industry 4.0 (Wang et al., 2016;
Rojko, 2017; Lu, 2017; Lee et al., 2015; Lee et al., 2014).

In order to accommodate these situations, this study proposed an intelligent decision support
system (DSS) by integrating the fuzzy versions of case-based reasoning (CBR) and analytic
hierarchy process (AHP). In additions, the proposed DSS uses many rules to support the case
reasoning process. Cases were represented using an object-oriented (OO) approach to
characterize cases for their tool set requirements. They were applied to retrieve prior cases
that had the most similar assigned tool sets to the current part orders using case similarity
measures. The proposed DSS used a fuzzy CBR method to represent unstructured (fuzzy)
information from product and process attributes of part orders. It utilized a fuzzy AHP
approach to prioritize case attributes in the case retrieval process. To the knowledge of the
authors, this approach has not been used in the past in cutting tool assignment and control
problems. This study illustrated a numerical analysis to test the soundness of the proposed
DSS on a machining operation center using a computer-based laboratory environment.

The remainder of this paper is organized as follows: Section 1 reviews the literature. Section
3 describes the proposed system. In Section 4, a numerical example is illustrated. Section 5
discusses the findings. Finally, conclusions are forwarded in Section 6.

2. Literature review

2.1. Artificial intelligence (Al) in DSS

Artificial intelligence (Al) plays an important role in the Industry 4.0. by converting typical
resources into intelligent objects that can sense, act, and behave within a smart environment
(Zhong et al., 2017). Intelligent industries take the advantage of advanced information to
achieve flexible, smart, and reconfigurable industrial processes to articulate dynamic and
stochastic markets (Lee et al., 2018; Zhong et al., 2017). As Zhong et al. (2017) reviewed,
Al technologies enable smooth flows of information as it is needed across holistic industrial
supply chains. An intelligent DSS uses extensively computer-based methods in Al
(Holsapple and Whinston, 1996). Based on this notion, this section discusses the interactions
among Al elements such as CBR, fuzzy set theory (FST), rule-based reasoning (RBR) and
OO case representation approach.

CBR is one of the popular analogical reasoning and machine learning paradigms in Al. It
emerged in the beginning of 1980s from the works of Roger Schank on dynamic memory
that focuses on remembering past episodes as cases and scripts as situation patterns for new
problem solving and learning strategies (Schank, 1982). A new problem is solved by reusing
and/or adapting successful experiences to the current similar situations and retaining it for
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future retrieval (Kolodner, 1991). CBR has been used in a variety of problem solving and
interpretive tasks including design, planning, diagnosis, explanation, justification,
classification, predicting, etc. (Kolodner, 1992). According to Watson and Marir (1994),
CBR systems are preferred by practitioners and researchers because of four reasons such as
an explicit domain model is not required for knowledge elicitation; identifying key case
attributes is easier than creating an explicit model; large volumes of information can be
managed using database management techniques; and case maintenance is easier.

CBR is one of the useful methodologies to develop advisory systems in intelligent DSS
(Beemer and Gregg, 2008). Advisory systems provide recommendations to human decision
makers in unstructured and complex situations. As Kolodner (1991), in uncertain and
dynamic environments, where much is unknown and solutions are open-ended, CBR systems
are preferred over other Al techniques because they can propose different solution
alternatives to their users based on partially available knowledge. According to Aamodt and
Plaza (1994), CBR systems are capable to utilize incremental learning from accumulated
experiences to solve new problems, which means its effectiveness increases through time as
more and more cases are retained in the case library. In addition, CBR systems can be
efficiently trained using relatively small amount of data; however, other Al systems like
ANNs cannot do so (Oh and Kim, 2007).

Aamodt and Plaza (1994) described their general CBR cycle in terms of four “Re”s in Figure
1. (a) Retrieve the most similar prior case to the current problem, (b) Reuse the knowledge in
the retrieved case; (c) Revise the retrieved prior case in order adapt to the new case; and (4)
Retain the final solution as the learned case for future retrieval.

Problem

Retrieve
Retrieved
case

Learned
case

A

) Reuse
Retain

General knowledge

teAs(tj:g t((:eads/e € jE Solved case
Revise

Confirmed Suggested
solution solution

Figure 1. CBR cycle adopted from (Aamodt and Plaza, 1994)

General domain knowledge represented in the form of rules in ruled-based expert systems is
usually required to support the CBR process. RBR uses domain knowledge from well-
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defined theory as rules to infer about the similarity between new and past cases. It may range
from weak to strong depending upon the problem type (Aamodt and Plaza, 1994). Guiding
rules may be developed and integrated into CBR systems to improve their performances.
Integrating rule-based reasoning (RBR) and CBR is one of the popular strategies to make
CBR systems more productive (Prentzas and Hatzilygeroudis, 2007; Golding and
Rosenbloom, 1996; Kasie et al., 2017a).

According to Bergmann et al. (2006) and Kolodner (1993), a case was defined as a
formalized piece of knowledge representing the reasoners” previous experiences. Watson
and Marir (1994) stated that prior cases are represented in terms of their several features as
problem descriptions and corresponding solutions as solution descriptions. Because real
situations are usually uncertain and vague situations, knowledge can be reasonably expressed
using fuzzy sets to grade the degree of membership of objects within [0,1] rather than crisp
values of {0, 1} (Zedah, 1965). A case is said to be fuzzy if at least one of its features is
expressed using linguistic terms, fuzzy numbers or fuzzy sets (Zimmermann, 2001).
Incorporating FST into CBR systems enhances the decision-making process through
utilizing imprecise experiences stored in the form of cases (de Mantaras and Plaza, 1997).
FST increases the flexibility and applicability of CBR approaches in real situations (Li and
Ho, 2009; Faez et al., 2009). In addition, in situations in which an integrated application of
CBR and RBR is required, the rules in decision-making are vaguely described using
linguistic terms such as strong similarity, weak similarity, etc. to define the level of
similarities between new cases and prior cases (see e.g. Kasie et al., 2017a; Kasie and Bright,
2019). Kasie et al. (2017a) reviewed recent applications in fuzzy CBR in various problem
domains.

The right case representation approach is required to meet the objectives of case reasoners.
Several case representation approaches were proposed in the past. However, an OO approach
is widely accepted by CBR system software developers (Watson and Marir, 1994) because
of its structured and compact-data representation capability to address memory related
issues, software reusability and easiness for users to understand (Pal and Shiu, 2004). OO
case representation methods are particularly useful in complex problem domains in which
cases/objects with different structures occur and each object is described by a set of features
(Bergmann and Stahl, 1998). They provide more flexibility and modularity to the system in
consideration through utilising the inheritance principles (Bergmann et al., 2006).

2.2. Multiple-attribute decision-making (MADM) in CBR

Cases are represented in terms of their multiple features in case libraries. A real case
retrieval usually uses MADM methods. MADM is used to rank a finite set of decision
alternatives using well-defined criteria (Kahraman et al., 2008). In CBR, prior cases are
treated as alternative solutions and case features are treated as multiple attributes(Chang et
al., 2008). The roles of MADM in CBR are to: (a) weight case attributes; (b) find case
similarities between new and prior cases; and (c) select the most similar prior cases that
match to the current problems.

Traditional MADM methods treat both attribute values and their weights as crisp numbers
(Chen and Hwang, 1992). In reality, such kinds of approaches are not convincing because

72



the values of attributes and their weights can be expressed in terms of linguistics terms,
fuzzy numbers and fuzzy sets. In order to address such complex situations, the current
MADM approaches incorporate fuzziness associated with human decision-making strategies.
Bellman and Zadeh (1970) initially articulated the concepts of FST into MADM problems.
In addition, Baas and Kwakernaak (1977) proposed the first fuzzy MADM approach that
was widely accepted as the classical fuzzy MADM framework. The fuzzy versions of
MADM studies were reviewed and elaborated (see e.g. Chen and Hwang, 1992; Ribeiro,
1996; Carlsson and Fullér, 1996; Kahraman et al., 2008; Mardani et al., 2015)).

2.2.1. Weighting case attributes

In MADM analyses, the determination of the weights of attributes is a crucial part for a
multi-attribute value analysis (Weber and Borcherding, 1993). Attributes weighting requires
domain knowledge elicitation to make the case reasoning meaningful (Park and Han, 2002).
A key factor in the case retrieval process is weighting case attributes (An et al., 2007; Pal
and Shiu, 2004). In this regard, the AHP is an important knowledge and experience
elicitation method to prioritise decision-making criteria (Saaty, 1994). It is a systematic
approach to acquire and represent experts” domain knowledge for rating case attributes (Park
and Han, 2002). Presently, the AHP a popular MADM method with vast applications
(Forman and Gass, 2001; Demirel et al., 2008; Xu et al., 2007; Lee et al., 2008). Vaidya and
Kumar (2006) reviewed its different applications.

The AHP has unique capabilities to decompose and structure any complex decision problems
hierarchically; determine the relative importance of attributes/sub-attributes using pairwise
comparisons; represent human judgements in terms of numerical values; measure the
consistency of pairwise comparisons; and hierarchic composition/synthesis (Forman and
Gass, 2001; Wind and Saaty, 1980; Zahedi, 1986; Saaty, 2003). According to Ho (2008), the
popularity of the AHP is because of its easiness to use, flexibility and capability for
integrating with other approaches. Ishizaka and Labib (2011) and Ho (2008) reviewed the
developments of the AHP applications and its integrated applications with other methods
respectively. Some recent studies revealed that the uses of integrating the AHP and CBR
systems to prioritise case attributes (see e.g. Kuo, 2010; An et al., 2007; Changchien and Lin,
2005; Faez et al., 2009; Wu et al., 2008; Park and Han, 2002). FST was not directly
addressed in the classical AHP (Chen and Hwang, 1992). The classical AHP was extended
into its fuzzy version to address vagueness in human decision-making (Van Laarhoven and
Pedrycz, 1983; Buckley, 1985). In addition, Demirel et al. (2008) reviewed several
applications of fuzzy AHP methods.

2.2.2. Similarity measure and case retrieval

Distance from target method is one of the widely accepted MADM approaches because it is
simple, easy to understand and straightforward to describe its idea (Chen and Hwang, 1992;
Kahraman, 2008). In CBR systems, the target is the current problem and solution alternatives
are prior cases. Distance-based case retrieval approaches mostly calculate the Euclidean
distance between any two cases using feature-value pairs, which constitute the required
cases. The most similar case is selected using this calculated distance (Liao et al., 1998;
Kumar et al., 2009). A prior case with the shortest distance from the target problem is the
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most similar case. This case retrieval approach is known as the Nearest Neighbor (NN)
pattern matching function using the weighted Euclidean distance measure. Many case
retrieval methods were proposed in the past namely NN, inductive learning, knowledge
guided and validated approaches (Pal and Shiu, 2004). Among these, the NN is the most
common and popular pattern recognition function in n-dimensional Euclidean space (Pal and
Shiu, 2004;Park and Han, 2002; Faez et al., 2009).

When different types of attributes constitute cases, the best way to measure the distance
between cases is finding the distance/similarity measures with respect to individual case
attributes and then calculating the cumulative weighted distance/similarity between two
cases using the normalized weights of case attributes and the individual distance measures
(Kolodner, 1993; Watson, 1999). Slonima and Schneider (2001) presented different
equations for measuring similarities with respect to different types of case attributes such as
crisp, range and fuzzy values. In addition, Faez et al. (2009) applied three different
approaches to measure similarities for crisp and fuzzy case attributes.

2.2.3. Fuzzy ranking

A number of fuzzy ranking methods were proposed to defuzzify and rank fuzzy values in
MADM analyses. Most of these proposed approaches are computationally cumbersome and
intractable when a large number of alternatives and attributes are considered. In order to
articulate this problem, Chen and Hwang (1992) reviewed the pros and cons of the current
fuzzy ranking approaches and proposed a new fuzzy MADM approach to reduce the
computational difficulties of the reviewed approaches. In their new approach, the following
three steps are included. (a) any linguistic terms should be projected into their equivalent
trapezoidal/triangular fuzzy numbers, which are scaled into any real numbers within the
range of [0, 1]; (b) these fuzzy numbers should be converted into their estimated crisp values
using the right fuzzy ranking approaches; and (c) an appropriate MADM approach must be
applied depending upon the problem type.

This approach avoids some computational difficulties by converting any fuzzy data into crisp
values before any MADM operations are undertaken. Although, its inputs are either fuzzy
data or a combination of fuzzy and crisp data, its outputs are usually crisp humbers in the
range of [0, 1]. Any complex problems with a combination of fuzzy data and crisp data can
be easily accommodated with the help of this approach.

3. Proposed DSS

This section presents the methods applied in this study based on the theories discussed in
Section 2 and the research problem stated in Section 2. The methods were used to propose an
intelligent DSS. Its flow diagram is presented in Figure 2, which was adapted from Kasie et
al. (2017b) . It was assumed that similar part orders require similar cutting tool sets when
part orders are appropriately characterized. The principal methodological approach in this
research was a CBR approach. The interactions among CBR, RBR, FST and MADM to
develop the proposed DSS are discussed in this section.

3.1. Case construction and representation
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In this paper, part orders were treated as fuzzy cases with multiple attributes. The crucial
attributes of these orders were identified to construct both prior and new cases. The proposed
DSS used Microsoft Excel tools to structure the features of part orders into case attributes.
These tools are usually simple and efficient to perform simple matrix operations. In addition,
Excel tools are easy to integrate them with Java applications. The attributes were used to
determine case similarities between the current and prior cases for tool sets assignment
strategies. This implemented the assumption that similar part orders demanded the same tool
sets for their key operations. In this case, a lathe operation center was considered as a case.
Three primary part attributes were identified and named part geometry, material and
operation types. The primary attributes were hierarchically branched into sub-attributes. The
identified case attributes were expressed using numerical values, nominal values, descriptive
and linguistic terms. Because some attributes were described using linguistic terms, the part
orders were treated as fuzzy cases.

( Start )

\ 4
Identify case attribute useful for
tool set assignment

v

Construct cases using
identified case attributes

Problem Determine the weight
(new case) of case attributes

Case base

Y
Historical Retrieve the most similar
cases case to the current case

A i

Analyse feature-value pair differences
between retrieved and new cases

A4
Revise tools assigned to retrieved
case as per demands of current cases

Y

Learned Assign revised tool sets to
case new part-order
A v
Implement proposed
decision
v
Index the

implemented decision

Figure 2: Flow diagram of the proposed DSS
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Prior cases were represented using the identified key attributes as problem descriptions and
their assigned tool sets as solution descriptions. New cases incorporated their problem
descriptions alone and their solutions descriptions were retrieved and adapted from retrieved
cases. A case representation scheme for the current part orders and prior cases is presented in
Figure 3. An OO case representation approach was applied to create cases in the Java
platform. This platform was employed because it is enriched with many in-built library
classes and methods, simple and clean for managing memory issues in such complex
situations.

In this case representation, linguistic terms were converted into their equivalent fuzzy
numbers within [0, 1] with the help of the proposed eleven conversion scales indicated in
Figure 4. Kasie et al. (2017a) applied the same conversion scales in a different problem
domain using the proposal by Chen and Hwang (1992). The variable x is any real number
within [0, 1] and p(x) is the degree of membership of x to the linguistic terms in Figure 4. A
case representation scheme for the current product orders and prior cases in the proposed
DSS is depicted in Figure 3. The prior case representations included an additional resource
named an assigned tool set as a solution description. The remaining components were used
as problem descriptions, which were common to both new and prior cases.

Numerical
valles P Assigned
i toolset

Fuzzy Case Symbolic/
number descriptive terms
Linguistic .
terms Nominal values

of {0, 1}

Figure 3. Fuzzy case representation scheme of part orders

KD,

Fairly Medium . Medium  Fairly ) Very Extremely
low Low low low Medium high high High high high
1.0 low
0.5
X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 4. Conversion of linguistic attributes into fuzzy numbers (Kasie et al., 2017a)
3.2. Weighting case attributes and fuzzy ranking

After identifying the key part attributes, it was required to prioritize these case attributes.
This was because not every attribute could have the same contribution to the case similarity
measure. Weighting case attributes requires domain knowledge elicitation from experts to
make meaningful the case reasoning process. In this aspect, the fuzzy AHP is popular to
prioritize case attributes (Park and Han, 2002; Saaty, 1994). Using pairwise comparisons, the
preference of one attribute over the other was expressed in terms of fuzzy linguistic terms
like “equally preferred”, “moderately preferred”, “strongly preferred”, etc., which are purely
subjective and linguistic terms to define their boundaries.

Table 1 presents the relationships among fuzzy AHP-based linguistic terms, their equivalent
fuzzy numbers and fuzzy reciprocals. The fuzzy numbers and their reciprocals were
converted into their corresponding standard fuzzy numbers by dividing them with the
maximum value of the universe of discourse, the number 10, according to the proposed
approach by Chen and Chen (Chen and Chen, 2009). Table 2 shows the relationships among
the linguistic terms and their standard forms within [0, 1]. Similar approaches were applied
in other studies in different problem domains (Wu et al., 2008; Kasie et al., 2017a).

The standard fuzzy numbers were transformed into their corresponding crisp values by
adopting a fuzzy ranking approach proposed by Chen and Chen (2009). The following
equation was proposed to defuzzify the required fuzzy numbers. This approach is simple and
prefers precise fuzzy numbers when two or more fuzzy numbers have the same mean value.

After determining the crisp score of trapezoidal fuzzy numbers, A, the classical AHP
approach was used to prioritize case attributes in the same approach as Kasie et al. (2017a).

Amean
=T M)

€5 T 14+ Ageq

Where Amean and Asg are the mean and standard deviation of a standard fuzzy number
respectively.

Table 1. Linguistic terms, their equivalent fuzzy numbers and standardized fuzzy numbers (Kasie et

al., 2017a).

AHP-based fuzzy Equivalent Standardized

linguistic terms Fuzzy Fuzzy Fuzzy Fuzzy reciprocal
number reciprocal number

Exactly equal (1,1,1) (1,1,1) (0.1,0.1,0.1) | (1/10,1/10, 1/10)
Equally preferred (1,1,2) (1/2,1,1) (0.1,0.1,0.2) | (1/20,1/10, 1/10)
Intermediate (1,2,3) (1/3,1/2,1) (0.1,0.2,0.3) | (1/30,1/20, 1/10)
Moderately preferred (2,3,4) (1/4, 173, 1/2) (0.2,0.3,0.4) | (1/40, 1/30, 1/20)
Intermediate (3,4,5) (1/5, 1/4, 1/3) (0.3,0.4,0.5) | (1/50, 1/40, 1/30)
Strongly preferred (4,5, 6) (1/6, 1/5, 1/4) (0.4,0.5,0.6) | (1/60, 1/50, 1/40)
Intermediate (5,6,7) (1/7, 1/6, 1/5) (0.5,0.6,0.7) | (1/70,1/60, 1/50)
Very strongly preferred | (6,7, 8) (1/8, 1/7, 1/6) (0.6,0.7,0.8) | (1/80, 1/70, 1/60)
Intermediate (7,8,9) (1/9, 1/8, 1/7) (0.7,0.8,0.9) | (1/90, 1/80, 1/70)
Extremely preferred (8,9,10) | (1/10,1/9,1/8) | (0.8,0.9,1.0) | (1/100, 1/90, 1/80)

3.3. Case retrieval
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The case retrieval process utilized the attribute-value pairs of the current and prior cases, and
normalized weights as its input variables. A number of case retrieval methods have been
proposed in the past. This study used the Nearest Neighbor (NN) pattern matching function
using the inverse of the weighted Euclidean distance. This approach is popular and
minimizes the limitations of other approaches as reviewed in Section 2.2.2. The weights of
part attributes were normalized i.e. the sum of weights, Xw; = 1.0.

The weighted Euclidean distance between a target (new) part order p and a prior part order g,
dist(p,q) in n-dimensional Euclidean vector space was calculated as:

dist(p,q) = \/Z?ﬂ[wi * dist(af,af)]z, dist(af,af’) €[0,1] (2)

Where:
n is the number of case attributes.
w; is the normalised weight of the ith case attribute.

dist (a°, &) is the distance measure between case p and case g with respect to the ith case
attribute alone.
a”and a/' are the values of the ith attribute for cases p and q respectively.

In this study,dist (a”,a) was calculated first with respect to every attribute and the
cumulative dist(p,q) Was calculated using w, and dist(a”,a’) values as indicated in

Equation (2). The dist (a”,a") values were determined depending upon the nature of the
individual case attributes.

In the case of numerical attributes:

p q
|ai _ai|

diSt(a?' a?) = ’ a? & a? € [ai,min ) ai,max] (3)

Aimax—%imin
Where aimin and aimax are the minimum and maximum value of the ith attribute respectively.
For nominal/descriptive attributes:

oD q
1if a; #q

dist(a?,a?) = |a? — af| = {0 S @
In the case of fuzzy attributes, trapezoidal fuzzy numbers were considered and Equation (5)
was adapted from a method of similarity measure of generalized fuzzy numbers proposed by
Hejazi et al. (2011). The method combines the geometric distance, perimeter, area and height
of the fuzzy numbers. In this case, all fuzzy numbers considered in this study are normal and
convex (they have equal heights = 1, see Figure 4) as the approaches applied in Faez et al.
(Kasie and Bright, 2019, Faez et al., 2009). When trapezoidal fuzzy numbers are in a

P_ (P P P D a_ (.9 .4 .4 4} p

standard form of af = (af,, af,, af;, a},) and af = (al,, a!,, a/;, af,);and 0 < af, <
p p p q q q q : o divi i

al, < aly < af, <land0<af, < af, < al, < af, < 1; then the individual distance

from the target case was calculated as:

®)

|afk—agk|> i} min(P(al)P(af)) . min(A(a}).A(af))+1

diSt(a?, a?) =1- [(1 - Zt:l 4 max(P(af),P(a?)) max(A(a?),A(a?))‘Fl
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Where:

P(a”)and p(a®)are the perimeters; and A(a?)and

A(af) the areas of trapezoidal fuzzy attributes of case p and case q respectively. The
perimeters and areas of the trapezoidal fuzzy attributes were calculated using the following
perimeter and area formulas:

P() = (@ —al)+ 1+ [@@,—al?+1 +(af—al) + (e —al) @
1
A(af) =7 (af3 — afz + a& — afl) 7
The P(a}') and A(a]) values were calculated in the same way.

From Equation (2), the values of dist(a?, a;) are in the range of [0, 1]. The upper bound of
the Euclidean distance, dist,;,(p,q), is found when all the values of dist(a?,al) = 1.
Similarly, the lower bound of the Euclidean distance, dist;,(p,q), is found when all the
values of dist(al,al) =0 i.e. when cases p and g are identical (p = g). With reference to
Equation (2), the dist,;, (p, q) and dist;, (p, q) values were determined as:

dist,,(p,q) = |1, wP (8)

dist;,(p,q) =0 )

Because distance and similarity are inversely related, the similarity between two cases p and
g, sim(p,q), can be found as follows (Liao et al., 1998; Kumar et al., 2009):
(10)

sim(p,q) = 1+aldist(p,q)]

Where a is a positive constant. Its value depends on the inverse proportionality of similarity
and distance. In this case, « = 1.0 was used by assuming that the inverse proportionality ratio
is one to one (1:1).

From the inverse relationship, the lower bound of the similarity measure, sim;,(p, q), is
found when the upper limit of the distance measure occurs. The sim;, (p, g) from Equation
(8) and Equation (10) can be calculated as

sim ( ) + : 1‘
b ’ 1 diStub( ’ ) 1 2 1VV'2
P, q p.q .| Zi=1 Wi

Similarly, the upper bound of similarity between part orders p and q, sim,,;,(p, q), is found
when the lower bound of distance occurs. From Equation (9) and Equation (10)

(11)

1 1

1+distp (p,q) - 140 =1 (12)

simyy (P, q) =

Referring to Equation (8) to Equation (10), the sim(p, q) value is within [sim,;, (p, q), 1.0].
All the above equations including basic rules were coded in the Java platform and
incorporated in the proposed DSS. Using these equations, the DSS generated a list of
similarity measures between the current case and prior cases while a new order was entering
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into the system. The DSS selected the maximum similarity measure on the similarity list
using the Java library method “max(list)”, which returns the maximum value from a list, in
the “java.util.Collections™ class. Using this returned value, any retrieved case with a higher
similarity value to the current problem was selected for reuse and adaptation.

3.4. Case reuse and adaptation

After the case retrieval, the next step was revising the retrieved case for a solution proposal.
In this regard, the proposed DSS was designed to present case attribute difference for case
comparison and revision. Based on this difference, some cutting tools assigned to the
retrieved cases were reused using attribute similarities. Others tools were either deleted or
replaced and new tools were added to adapt the retrieved cases for the new part orders.
Several (If..., Then....) rules were developed from the general domain-dependent knowledge
to support the decision-making process. With reference to Figure 2, the proposed DSS was
intended to incorporate the following rules based on the sameness of two cases.

= If the current and retrieved cases are identical (sim(p, g) = 1), then the retrieved tool
set should be directly reused without any revisions.

= |f they are not identical (sim(p,q) < 1), then revisions based on differences in
attributes should be undertaken.

The second rule was expanded to consider specific attribute changes in order to incorporate
other new cutting tools. For example, when new attributes are added to and/or deleted from a
new order, then specific tools should be added to and/or deleted from the retrieved tool set
by exerts.

3.5. Case retaining

Case retaining is one of the crucial tasks in CBR systems. It is useful to retrieve previously
implemented decisions for future reuse and adaptations. A case library was created and
implemented with the help of the “java.util. ArrayList” class in the Java platform. The
implemented cases were indexed using “add (object)” function, which is one of the in-built
methods of the Java “java.util. ArrayList” class. This method appends a new element at the
end of a list.

4. Numerical analysis

The section implements the methods proposed in Section 3 using a humerical example. The
numerical example was illustrated in a computer-based environment using a lathe-machine
operations center, which was assumed to produce several rotating shafts for various
purposes. This machining center was selected because of its simplicity for illustration.

4.1. Case representation and weighting attributes

Thirteen part attributes were identified by human experts to represent part orders as cases
using an OO method. These attributes were assumed that they could strongly influence part-
cutting tool assignment activities in specific metal cutting processes. They were structured
hierarchically (Table 2) to weight their importance. The hierarchy incorporates three primary
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attributes: (a) part geometry, (b) material property, and (c) required operations types. They
are crucial attributes for assigning cutting tools for specific part orders in metal cutting. The
primary attributes were subdivided into their succeeding sub-attributes. The normalized
weights of the major attributes and sub-attributes at their specific levels were evaluated using
a fuzzy AHP. The hierarchical evaluation was performed using the concepts presented in
Table 1 and Equation (1). The normalized weights of the thirteen case attributes were
proportionally calculated and presented in Table 2. The detail of this calculation is similar to
as presented by the authors in (Kasie et al., 2017a).

The thirteen part attributes were represented using numerical, nominal and fuzzy data (see
Table 3). The diameter (Di) and turn-depth (TD) of workpieces were represented using
numerical values in millimeter. The tolerance limit (TL) and surface finish (SF) of products
and the hardness (HD) of construction materials were described in terms of linguistic terms
and the terms were converted into fuzzy numbers referring to Figure 2. These features are
mostly described using linguistics terms such as high, medium, low, etc. in machining
processes rather than specific units. The material type (MT) and heat treatment type (HT) of
construction materials were described in symbolic terms. Material compositions are usually
described by specific terms such as carbon steel, aluminum, stainless steel, etc. Similarly,
heat treatments are typically classified as normalized, annealed, etc. Machining operation
types such as turning (Tu), facing (Fa), thread-cutting (Th), drilling (Dr), boring (Bo) and
tapping (Ta) were expressed using nominal values of {0, 1.0}, to indicate whether a specific
operation is required to produce a product.

Table 2. Hierarchy of case attributes and their weights

Attribute Weight

Primary Middle End w; calculation Wi
Di (0.229) 0.279x0.229 0.068
Part geometry TD(0.229) 0.279x0.229 0.068
(0.297) ) TL(0.271) 0.279x0.271 0.081
SF(0.271) 0.279x0.271 0.081
Material property MT(0.371) 0.332x0.371 0.123
(0.332) - HT(0.297) 0.332x0.297 0.110
HD(0.332) 0.332x332 0.099
Fa(0.254)  0.371x0.522x0.254  0.049

External

_ (0522) Tu (0.421) 0.371x0.522x0.421  0.081
Operation types Th (0.325)  0.371x0.522x0.325  0.063
(0.371) Internal Dr (0.372)  0.371x0.478x0.372  0.066
(0.478) Bo(0.314)  0.371x0.478x0.314  0.056

Ta(0.314)  0.371x0.478x0.314  0.056

Four product orders (PO1-PO4) as new cases and two prior cases (PC1 and PC2) as prior
cases are presented in Table 3 to illustrate the numerical example in the proposed DSS. The
numbers of new and prior cases were limited for illustration purposed; however, the
proposed system could manage a large number of cases. TS1 and TS2 were initially assigned
tool sets to PC1 and PC2 respectively.
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Table 3. Structured thirteen attributes of part orders/cases

Part

Case/part order attributes

order MT HT TD Di TL SF HD Tu Fa Th Dr Bo Ta TS
PO1 Carbonsteel Normalize 35 120 0.5,0.6,0.7,08 0.8,09,0910 05,0.6,0.7,0.8 1 0 1 0 1 0

PO2  Alloy steel Anneal 45 160 0.6,0.7,08,09 05060607 0.6,0.70.8,0.9 1 0 1 1 0 1

PO3  Carbonsteel Normalize 30 120 0.5,0.6,0.70.8 0.7,08,0910 05,0.6,0.78.0 1 0 1 0 1 1

PO4  Alloy steel Anneal 43 170 0.7,08,0910 0.5,0.6,06,0.7 0.6,0.7,08,0.9 1 1 1 1 0 1 -
PC1  Alloy steel Anneal 40 150 0.7,08,08,09 0.6,0.70.708 0.6,0.70.8,0.9 1 0 0 1 0 1 TS1
PC2 Carbonsteel Normalize 25 90 0.6,0.7,0809 08090910 05,0.6,0.7,08 1 1 1 0 1 0 TS2

4.2. Case similarity and retrieval

After determining the normalized weights of case attributes, the sim(p,q) value was
calculated using Equation (2). From the normalized weight (wi) from Table 2, the proposed
system automatically generated the value of sim;,(p,q) = 0.7766 and sim,;,(p,q) = 1.0
with the help of Equation (9) and Equation (10) respectively. Referring to these two values,
the value of sim(p,q) was determined within [0.7766, 1.0] for this case. Distances with
respect to the individual attributes were calculated using from Equation (3) to Equation (5)
depending on the nature of attributes.

The first two symbolic variables (MT and HT) were converted into nominal values of {0, 1}
using Equation (4). In addition, some rules were developed and a Java in-built method was
applied. If the material composition of the new and prior cases is described using identical
strings, their distance measure is the numeric string “0”; otherwise, it is “1”. The same
approach was applied to the heat treatment. The Java library method
“Integer.parselnt(numeric string)” that changes numeric strings into the same integer
numbers was applied to return the integer values of {0, 1}. After applying the rules and the
method, the individual distances, dist(a?,af) and dist(a},al), were determined using
Equation (4) for the first and second attributes respectively.

The individual distances for the next two numerical variables/attributes (TD and Di) such as
dist(a,ad), and dist(ak,af) respectively were calculated using Equation (3). The lower
limit values were arbitrarily set as 15.0 mm and 60.0 mm and the upper limit values were set
as 45.0 mm and 180.0 mm for turning depth and diameter respectively.

The three fuzzy attributes (TL, SF and HD) were converted into their estimated
trapezoidal/triangular numbers (see Fig. 4). For example, in the case of PO2 and PC1, the
hardness of construction materials, HD = (0.6, 0.7, 0.8) is equivalent to the fuzzy term “fairly
highly”. The same conversion was employed to the remaining two fuzzy attributes. Eq. (5)
was used to calculate individual distances, dist(af,ad), dist(af,al) and dist(a?,al)
from the 5 to the 7™ attributes. For the five nominal attributes, from the 8™ to the 13
attributes, Equation (4) was applied to calculate the individual distances from dist(a5, ad)

to dist(als, afs).
Using the normalized weights and individual distances, the weighted Euclidean distance

between new and prior orders/cases was calculated by implementing Equation (2). Applying
an inverse relationship between distance and similarity, the case similarity measures were
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computed using Equation (10). A list of similarity within the upper and lower bounds
[0.7766,1.0] was generated from this computation. The Java in-built method “max(list)” was
applied to select a prior case with the maximum similarity with the current case. For
example, as the first new part order PO1 entered into the system, the proposed DSS found
the similarities between PO1 and the two initial training samples as sim(P0O1,PC1) =
0.8331, and sim(P0O1,PC2) = 0.9082 using Equation (10). The maximum similarity from
this list was returned as java.util.Collections.max(0.8331, 0.9082) = 0.9082. The most
relevant and similar previous case to PO1 was PC2. This implied that the retrieved tool set
was the one that was assigned to PC2 or TS2 (Table 4). This retrieved tool set was revised
and retained for future retrieval. Using the same approach, the maximum similarities and the
best similar cases (tool sets) were determined for the remaining three orders.

PO2: java.util.Collections.max(0.9783, 0.8387, 0.8314) = 0.9983 (TS1)
PO3: java.util.Collections.max(0.8394, 0.8950, 0.9440, 0.8380) = 0.9440(TS3)
PO4: java.util.Collections.max(0.9489, 0.8428, 0.8273, 0.9523, 0.8334) = 0.9523 (TS4)

To access the retrieved tool set (TS), the proposed DSS utilized two Java in-built methods in
combination, “get(integer)” and “indexOf(object)” in the “java.util.ArrayList” class. These
two functions were employed to return a case in its case library at a specific index and the
index of the first matching case respectively. The index (location) of the retrieved case in its
case-base and the index of the maximum similarity from its similarity list were identical in
this system. For example, in case of PO2, the maximum value was the first element on the
similarity list, and this implied that the most similar case in the case base to PO2 was the
first prior case.

While the new orders from PO1 to PO4 were entering into the proposed system, the number
of elements on the cases in the case-base increased by one after each new order was
processed. For example, as the second new order PO2 just arrived at the system, the number
of elements on the similarity list grew from 2 into 3 by considering PO1 as a learned case for
future retrieval. As the last order arrived at the system, the number of prior cases in the case
library was six. The results are summarized in Table 4.

Table 4. Summarized results from proposed DSS

New part Retrieved Similarity = Retrieved TS Number of cases in case-base
(PO) case value for revision As PO arrived  After PO processed
PO1 PC2 0.9082 TS2 2 3
PO2 PC1 0.9783 TS1 3 4
PO3 PC3 (learned) 0.9440 TS3 4 5
PO4 PC4 (learned) 0.9523 TS4 5 6

As a retrieved tool set was assigned to a new case, the DSS added the copy of the new case
into its case-base using the “Cloneable” interface by overriding the “clone()” function in the
Java “Object” class. After processing each order, the previous case similarity list was cleared
to create a new similarity list for the next new arrival using the Java in-built function
“clear()”. It was used to keep the numbers of cases in the case library equals to the number of
similarity values on the similarity list for each case retrieval. New cases were indexed in the
case libraries using the library method “add(object)”, which appends the current case at the
end of the list. To disclose the number of cases available every time in the case libraries,
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another library method “size()” was utilized. These three library methods were utilized from
the “java.util. ArrayList” class.

4.3. Case revision and decision proposal

The proposed DSS was capable to presents case attribute variations between the current and
retrieved prior cases for revisions. The rules proposed in Section 3.4 were implemented
based on these variations. For instance, considering PO2, the similarity between the new and
the retrieved cases was determined as sim(P02,PC1) = 0.9783 < 1.0. This implied that
these two cases were not identical and revisions were enviable. In the case adaptation stage,
cutters can be removed, replaced or added. When PO2 entered into the system, the major
different between this case and the retrieved case PC1 was the thread-making operation.
PO2 required this operation but it was not in PC1. In this case, a new cutter for thread
making was added into the retrieved tool set TS1 and retained as PC4 with TS4 for future
retrieval. Similarly, PC3 and PC4 were the revisions of PC2 and PC1 as PO1 and PO2 were
retrieved as the best similar prior cases respectively (see Table 4).

5. Discussion

It was reviewed that part-cutting tool assignment is one of the complex issues in
manufacturing when a new part order is received. Several mathematical and heuristic
optimization approaches were proposed to solve cutting tool planning problems. These
models were very complex and intractable to solve in real industrial situations. The proposed
DSS in this study was relatively simple and highly flexible to articulate the stated problem
situations using machine-learning algorithms. The proposed system started with two prior
cases as training samples and it was gradually increased into six cases as the fourth order
was processed (Table 4). This implied that the system was designed to update continuously
the number of cases in its case library. This characteristic of the proposed system improved
its effectiveness through time to accommodate dynamically changing manufacturing
situations. In addition, this proposed system was efficiently trained using a few cases (two
prior case in the numerical example); however, other systems like ANNs could not
accommodate this problem (Oh and Kim, 2007).

From the methodological perspective, this study combined CBR, FST, RBR and MADM
approaches for case retrieval and adaptation. This combination was useful to make the
proposed DSS flexible in dynamic and uncertain situations. In case retrieval, revision and
retaining, relatively simple analytical models, user-defined functions and in-built Java library
methods were implemented in the Java platform. This implied that the proposed system
utilized relatively easier methods to assign cutters to new products at operational levels of
resource planning. In addition, the case representation in this research was simple, flexible,
comprehensive and easy to understand by its users using an OO approach. Four different
forms of case attributes (numerical, categorical, symbolic and verbal terms) were included to
make the system flexible enough (Table 3 and Figure 4); however, the proposed DSS could
articulate any other forms of knowledge and experiences depending upon the needs of the
users of the system.
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The uncertainty and vagueness associated with human reasoning and thoughts were
articulated using fuzzy set theory. In the numerical example, it was realised that fuzzy case
attributes could accommodate more flexibilities than numerical-valued attributes. For
example, the numerical attributes named turning depth and diameter could not accommodate
changes when new part orders unpredictably entered into the system with attribute values
above the upper limits and/or below the lower limits of these attribute values. However, in
the case of the fuzzy attributes such as tolerance limit, hardness and surface smoothness,
there were no any upper and lower limit restrictions (Table 3).

Using the same approach, the proposed system can incorporate any other machining
operations such as milling, drilling, grinding etc. To do this, system developers or users are
required to identify and structure hierarchically key product attributes, which can influence
part-cutting tool assignment activities. These attributes are used to create cases for part-cutter
assignment. The weights such attributes must be hierarchically evaluated. For example, the
shape of the workpiece can be very essential to the other machining operations because their
workpieces can be different from cylindrical shapes. This shows that the performance of the
proposed DSS is highly flexible depending upon its developers” capabilities to represent
experts” knowledge and judgments. If case attributes are suitably selected and their weights
are properly evaluated using the knowledge and experiences of experts at specific operations,
the system can support the decision makers in the right way.

From the managerial perspective, operational managers can plan the required cutting tools in
parallel to their product plans. They can enumerate the available cutters and purchase or
manufacture the required cutting tools in the planning phases. This can minimize the
unnecessary holding and downtime costs by stabilizing the flows of cutting tools for planned
production periods. This improves the utilization of resources.

6. Conclusion

In this study, a novel DSS was proposed to articulate the problems of cutting tool assignment
and control using a fuzzy CBR as the principal methodology. The proposed DSS was
capable to retrieve the most similar prior cases to the current part orders. As presented in
Table 4, the DSS started with two prior cases in the case library and finally it was increased
into six cases after the fourth (final) order was processed. It was found that the DSS
developed in this research was able to update continuously the number of cases in its case
library. This feature could improve the effectiveness of the DSS by increasing the number of
alternative solutions for the newly arriving orders through time to accommodate dynamically
changing manufacturing situations. Further, it was shown that the proposed DSS was
efficiently trained using a few well-defined cases as leaned experiences.

An OO approach was utilized to represent fuzzy cases using the combination of numerical
values, nominal values, symbolic and fuzzy linguistic terms. The case representation was
useful to accommodate the flexibility required in the DSS. A fuzzy CBR methodology was
used to represent imprecise and uncertain knowledge in the case representation and retrieval,
and decision-making processes. Instead of measuring precisions such as tolerance and
surface smoothness in micrometers for cutting tool assignment, it was meaningful to describe
them in terms of linguistic terms. In addition, a fuzzy AHP was used to elicit the knowledge
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and judgements of experts for weighting case attributes. It was implied that such kinds of
knowledge representation approaches could emulate human thoughts in order to process
imprecise knowledge in manufacturing situations rather than using optimization methods as
sole solution approaches for cutting tool-planning problems.

Using similar procedures, the DSS could be extended to other machining operations such as
milling, grinding, drilling, etc. by identifying and weighting the right case attributes as
specific operation centers. Although the numerical example was illustrated using a few new
and prior cases, the proposed DSS was capable to accommodate any number of part orders
scheduled, prior cases and case attributes in order to address real product mix variation in
manufacturing situations.

In the future, the proposed DSS can be tested in industrial environments using historical data
from several metal cutting operation centers to validate its accuracy. In this case, more
detained information can be required to represent part orders as cases. Depending on the
pattern of industrial situations, this approach can be applied to classify or cluster cases. In
this case, k-NN algorithm can be used rather than retrieving a single past case. In addition,
detail knowledge-based rules will be included to make the case retrieval process more
effective and efficient in the future.
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