Enhancing carbon sequestration through tropical forest management: A review

Authors

  • Asif Raihan Universiti Kebangsaan Malaysia

Keywords:

Tropical forest, SOC, Forest management, Climate change, Soil fertility

Abstract

Soil absorbs a lot of carbon dioxide (CO2). Soil organic carbon (SOC) is understudied in tropical regions despite its importance. This study examines how forest management might increase SOC sequestration and restore degraded tropical ecosystems. Sequestering soil organic carbon could enhance soil fertility and reduce land degradation and greenhouse gas (GHG) emissions. Soil structure, aggregation, infiltration, faunal motion, and nutrient (C, N, P and S) cycling are improved. Forest ecosystem management improves C sequestration, climate change mitigation, and degraded land rehabilitation. When combined with organic residue managing and nitrogen-fixing plants, afforesting or reforesting marginal or degraded lands enhances C storing in biomass and soil and supports soil condition, food productivity, land refurbishment, and greenhouse gas reduction. Sequestered C increases biological, physical, and chemical fertility, improving soil health.

References

References

Ahmed, O. H., Hasbullah, N. A., & Ab Majid, N. M. (2010). Accumulation of soil carbon and phosphorus contents of a rehabilitated forest. The Scientific World Journal, 10, 1988-1995.

Akpa, S. I., Odeh, I. O., Bishop, T. F., Hartemink, A. E., & Amapu, I. Y. (2016). Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271, 202-215.

Ali, A., Rahman, S., & Raihan, A. (2022). Soil carbon sequestration in agroforestry systems as a mitigation strategy of climate change: a case study from Dinajpur, Bangladesh. Advances in Environmental and Engineering Research, 3(4), 1-15.

Aragón, S., Salinas, N., Nina-Quispe, A., Qquellon, V. H., Paucar, G. R., Huaman, W., ... & Roman-Cuesta, R. M. (2021). Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Global Ecology and Conservation, 28, e01696.

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230-234.

Bachega, L. R., Bouillet, J. P., de Cássia Piccolo, M., Saint-André, L., Bouvet, J. M., Nouvellon, Y., ... & Laclau, J. P. (2016). Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecology and Management, 359, 33-43.

Bauters, M., Ampoorter, E., Huygens, D., Kearsley, E., De Haulleville, T., Sellan, G., ... & Verheyen, K. (2015). Functional identity explains carbon sequestration in a 77‐year‐old experimental tropical plantation. Ecosphere, 6(10), 1-11.

Begum, R. A., Raihan, A., & Said, M. N. M. (2020). Dynamic impacts of economic growth and forested area on carbon dioxide emissions in Malaysia. Sustainability, 12(22), 9375.

Biber, P., Felton, A., Nieuwenhuis, M., Lindbladh, M., Black, K., Bahýl', J., ... & Tuček, J. (2020). Forest biodiversity, carbon sequestration, and wood production: modeling synergies and trade-offs for ten forest landscapes across Europe. Frontiers in Ecology and Evolution, 8, 547696.

Bini, D., Santos, C. A. D., Silva, M. C. P. D., Bonfim, J. A., & Cardoso, E. J. B. N. (2018). Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Scientia Agricola, 75, 102-110.

Bond, W. J., Stevens, N., Midgley, G. F., & Lehmann, C. E. (2019). The trouble with trees: afforestation plans for Africa. Trends in ecology & evolution, 34(11), 963-965.

Bonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. (2016). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204-221.

Brown, H. C., Berninger, F. A., Larjavaara, M., & Appiah, M. (2020). Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. Forest ecology and management, 472, 118236.

Buotte, P. C., Law, B. E., Ripple, W. J., & Berner, L. T. (2020). Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecological Applications, 30(2), e02039.

Camacho, L. D., Camacho, S. C., & Youn, Y. C. (2009). Carbon sequestration benefits of the Makiling forest reserve, Philippines. Forest Science and Technology, 5(1), 23-30.

Campo, J., & Merino, A. (2016). Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Global Change Biology, 22(5), 1942-1956.

Crezee, B., Dargie, G. C., Ewango, C. E., Mitchard, E. T., Emba B, O., Kanyama T, J., ... & Lewis, S. L. (2022). Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nature Geoscience, 15(8), 639-644.

Chayaporn, P., Sasaki, N., Venkatappa, M., & Abe, I. (2021). Assessment of the overall carbon storage in a teak plantation in Kanchanaburi province, Thailand–Implications for carbon-based incentives. Cleaner Environmental Systems, 2, 100023.

Chen, D., Zhang, C., Wu, J., Zhou, L., Lin, Y., & Fu, S. (2011). Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China. Agricultural and Forest Meteorology, 151(9), 1214-1225.

Chinade, A. A., Siwar, C., Ismail, S. M., & Isahak, A. (2015). A review on carbon sequestration in Malaysian forest soils: Opportunities and barriers. International Journal of Soil Science, 10(1), 17.

Cook, R. L., Binkley, D., Mendes, J. C. T., & Stape, J. L. (2014). Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 324, 37-45.

Cook, R. L., Binkley, D., & Stape, J. L. (2016). Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. Forest Ecology and Management, 359, 92-98.

Cusack, D. F., Torn, M. S., McDOWELL, W. H., & Silver, W. L. (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology, 16(9), 2555-2572.

Derwisch, S., Schwendenmann, L., Olschewski, R., & Hölscher, D. (2009). Estimation and economic evaluation of aboveground carbon storage of Tectona grandis plantations in Western Panama. New Forests, 37, 227-240.

Domke, G. M., Oswalt, S. N., Walters, B. F., & Morin, R. S. (2020). Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proceedings of the national academy of sciences, 117(40), 24649-24651.

Dou, X., Xu, X., Shu, X., Zhang, Q., & Cheng, X. (2016). Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecological Engineering, 87, 263-270.

Dubiez, E., Freycon, V., Marien, J. N., Peltier, R., & Harmand, J. M. (2019). Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic of Congo). Agroforestry Systems, 93, 1167-1178.

Eclesia, R. P., Jobbagy, E. G., Jackson, R. B., Biganzoli, F., & Piñeiro, G. (2012). Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biology, 18(10), 3237-3251.

Epron, D., Mouanda, C., Mareschal, L., & Koutika, L. S. (2015). Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biology and Biochemistry, 85, 183-189.

FAO. (2020). Global Forest Resources Assessment 2020. FAO, Rome, Italy, 2020. http://www.fao.org/forest-resourcesassessment/2020 (Accessed: 11 February 2023).

Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., ... & Peñuelas, J. (2019). Global trends in carbon sinks and their relationships with CO2 and temperature. Nature climate change, 9(1), 73-79.

Ferraz, A., Saatchi, S., Xu, L., Hagen, S., Chave, J., Yu, Y., ... & Ganguly, S. (2018). Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environmental Research Letters, 13(9), 095001.

Forest Survey of India. (2017). Carbon stock in India’s Forests. Indian State Forest Report, 8, 120-127.

F Fornara, D. A., Banin, L., & Crawley, M. J. (2013). Multi‐nutrient vs. nitrogen‐only effects on carbon sequestration in grassland soils. Global Change Biology, 19(12), 3848-3857.

Jaafar, W. S. W. M., Maulud, K. N. A., Kamarulzaman, A. M. M., Raihan, A., Sah, S. M., Ahmad, A., Saad, S. N. M., Azmi, A. T. M., Syukri, N. K. A. J., & Khan, W. R. (2020). The influence of forest degradation on land surface temperature–a case study of Perak and Kedah, Malaysia. Forests, 11(6), 670.

Joshi, R., Singh, H., Chhetri, R., & Yadav, K. (2020). Assessment of carbon sequestration potential in degraded and non-Degraded community forests in Terai Region of Nepal. Journal of forest and environmental science, 36(2), 113-121.

Lal, R. (2013). Soil carbon management and climate change. Carbon Management, 4(4), 439-462.

Lee, K. L., Ong, K. H., King, P. J. H., Chubo, J. K., & Su, D. S. A. (2015). Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turkish Journal of Agriculture and Forestry, 39(1), 154-161.

Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Turner, B. L., ... & Mo, J. (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences, 118(16), e2020790118.

Liu, J., Yang, Z., Dang, P., Zhu, H., Gao, Y., Ha, V. N., & Zhao, Z. (2018). Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approach. Plant and Soil, 423, 327-338.

Macedo, M. O., Resende, A. S., Garcia, P. C., Boddey, R. M., Jantalia, C. P., Urquiaga, S., ... & Franco, A. A. (2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management, 255(5-6), 1516-1524.

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: Threats, opportunities and solutions. Philosophical Transactions of the Royal Society B, 375(1794), 20190104.

Marín‐Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: a tropical analysis. Global Ecology and Biogeography, 22(1), 105-117.

Mayer, M., Prescott, C. E., Abaker, W. E., Augusto, L., Cécillon, L., Ferreira, G. W., ... & Vesterdal, L. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, 118127.

McDonald, C. A., Delgado-Baquerizo, M., Reay, D. S., Hicks, L. C., & Singh, B. K. (2018). Soil nutrients and soil carbon storage: modulators and mechanisms. In Soil carbon storage (pp. 167-205). Academic Press.

Ontl, T. A., Janowiak, M. K., Swanston, C. W., Daley, J., Handler, S., Cornett, M., ... & Patch, N. (2020). Forest management for carbon sequestration and climate adaptation. Journal of Forestry, 118(1), 86-101.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., ... & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993.

Paniagua-Ramirez, A., Krupinska, O., Jagdeo, V., & Cooper, W. J. (2021). Carbon storage estimation in a secondary tropical forest at CIEE Sustainability Center, Monteverde, Costa Rica. Scientific reports, 11(1), 23464.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57.

Pereira, A. P., Zagatto, M. R., Brandani, C. B., Mescolotti, D. D. L., Cotta, S. R., Gonçalves, J. L., & Cardoso, E. J. (2018). Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Frontiers in microbiology, 9, 655.

Raihan, A. (2023a). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus, 9, 100180.

Raihan, A. (2023b). Toward sustainable and green development in Chile: dynamic influences of carbon emission reduction variables. Innovation and Green Development, 2(2), 100038.

Raihan, A. (2023c). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2), 3825.

Raihan, A. (2023d). A review of tropical blue carbon ecosystems for climate change mitigation. Journal of Environmental Science and Economics, 2(4), 14-36.

Raihan, A. (2023e). Sustainable development in Europe: A review of the forestry sector’s social, environmental, and economic dynamics. Global Sustainability Research, 2(3), 72-92.

Raihan, A. (2023f). A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. Journal of Environmental Science and Economics, 2(3), 36-58.

Raihan, A. (2023g). The influences of renewable energy, globalization, technological innovations, and forests on emission reduction in Colombia. Innovation and Green Development, 2, 100071.

Raihan, A. (2023h). A concise review of technologies for converting forest biomass to bioenergy. Journal of Technology Innovations and Energy, 2(3), 10-36.

Raihan, A. (2023i). A review on the integrative approach for economic valuation of forest ecosystem services. Journal of Environmental Science and Economics, 2(3), 1-18.

Raihan, A. (2023j). The contribution of economic development, renewable energy, technical advancements, and forestry to Uruguay's objective of becoming carbon neutral by 2030. Carbon Research, 2, 20.

Raihan, A. (2023k). An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. Asia-Pacific Journal of Regional Science, 7, 665-696.

Raihan, A. (2024a). The potential of agroforestry in South Asian countries towards achieving the climate goals. Asian Journal of Forestry 8(1), 1-17.

Raihan, A. (2024b). A Systematic Review of Geographic Information Systems (GIS) in Agriculture for Evidence-Based Decision Making and Sustainability. Global Sustainability Research, 3(1), 1-24.

Raihan, A., Begum, R. A., Said, M. N. M., & Abdullah, S. M. S. (2018). Climate change mitigation options in the forestry sector of Malaysia. J. Kejuruter, 1(6), 89-98.

Raihan, A., Begum, R. A., Mohd Said, M. N., & Abdullah, S. M. S. (2019). A review of emission reduction potential and cost savings through forest carbon sequestration. Asian Journal of Water, Environment and Pollution, 16(3), 1-7.

Raihan, A., Begum, R. A., & Said, M. N. M. (2021a). A meta-analysis of the economic value of forest carbon stock. Geografia–Malaysian Journal of Society and Space, 17(4), 321-338.

Raihan, A., Begum, R. A., Said, M. N. M., & Pereira, J. J. (2021b). Assessment of carbon stock in forest biomass and emission reduction potential in Malaysia. Forests, 12(10), 1294.

Raihan, A., Begum, R. A., Said, M. N. M., & Pereira, J. J. (2022a). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environmental and Ecological Statistics, 29(3), 477-507.

Raihan, A., Begum, R. A., Said, M. N. M., & Pereira, J. J. (2022b). Relationship between economic growth, renewable energy use, technological innovation, and carbon emission toward achieving Malaysia’s Paris agreement. Environment Systems and Decisions, 42(4), 586-607.

Raihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29.

Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., ... & Mahmood, A. (2023a). An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus, 9, 100179.

Raihan, A., Muhtasim, D. A., Farhana, S., Pavel, M. I., Faruk, O., Rahman, M., & Mahmood, A. (2022c). Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. Energy and Climate Change, 3, 100080.

Raihan, A., Muhtasim, D. A., Farhana, S., Rahman, M., Hasan, M. A. U., Paul, A., & Faruk, O. (2023b). Dynamic linkages between environmental factors and carbon emissions in Thailand. Environmental Processes, 10(1), 5.

Raihan, A., Muhtasim, D. A., Pavel, M. I., Faruk, O., & Rahman, M. (2022d). An econometric analysis of the potential emission reduction components in Indonesia. Cleaner Production Letters, 3, 100008.

Raihan, A., Pavel, M. I., Muhtasim, D. A., Farhana, S., Faruk, O., & Paul, A. (2023c). The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innovation and Green Development, 2(1), 100035.

Raihan, A., & Said, M. N. M. (2022). Cost–benefit analysis of climate change mitigation measures in the forestry sector of Peninsular Malaysia. Earth Systems and Environment, 6(2), 405-419.

Raihan, A., & Tuspekova, A. (2022a). Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. Journal of Environmental Studies and Sciences, 12(4), 794-814.

Raihan, A., & Tuspekova, A. (2022b). Nexus between energy use, industrialization, forest area, and carbon dioxide emissions: New insights from Russia. Journal of Environmental Science and Economics, 1(4), 1-11.

Raihan, A., & Tuspekova, A. (2022c). Toward a sustainable environment: Nexus between economic growth, renewable energy use, forested area, and carbon emissions in Malaysia. Resources, Conservation & Recycling Advances, 15, 200096.

Raihan, A., & Tuspekova, A. (2022d). Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Development Sustainability, 1, 100019.

Raihan, A., & Tuspekova, A. (2022e). Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in Turkey. Carbon Research, 1(1), 20.

Raihan, A., & Tuspekova, A. (2022f). Nexus between emission reduction factors and anthropogenic carbon emissions in India. Anthropocene Science, 1(2), 295-310.

Raihan, A., & Tuspekova, A. (2023). Towards net zero emissions by 2050: the role of renewable energy, technological innovations, and forests in New Zealand. Journal of Environmental Science and Economics, 2(1), 1-16.

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., ... & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the national academy of sciences, 108(24), 9899-9904.

Sang, P. M., Lamb, D., Bonner, M., & Schmidt, S. (2013). Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant and Soil, 362, 187-200.

Santos, F. M., Balieiro, F. D. C., Fontes, M. A., & Chaer, G. M. (2018). Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant and soil, 423, 141-155.

Satakhun, D., Chayawat, C., Sathornkich, J., Phattaralerphong, J., Chantuma, P., Thaler, P., ... & Kasemsap, P. (2019). Carbon sequestration potential of rubber-tree plantation in Thailand. In IOP Conference Series: Materials Science and Engineering, 526(1), 012036.

Sang, P. M., Lamb, D., Bonner, M., & Schmidt, S. (2013). Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant and Soil, 362, 187-200.

Sayer, E. J., Lopez-Sangil, L., Crawford, J. A., Bréchet, L. M., Birkett, A. J., Baxendale, C., ... & Schmidt, M. W. (2019). Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. Scientific Reports, 9(1), 18030.

Saynes, V., Hidalgo, C., Etchevers, J. D., & Campo, J. E. (2005). Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Applied Soil Ecology, 29(3), 282-289.

Schleuss, P. M., Widdig, M., Heintz‐Buschart, A., Kirkman, K., & Spohn, M. (2020). Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant‐growth responses. Ecology, 101(5), e03003.

Situmorang, J. P., & Sugianto, S. (2016). Estimation of carbon stock stands using EVI and NDVI vegetation index in production forest of Lembah Seulawah sub-district, Aceh Indonesia. Aceh International Journal of Science and Technology, 5(3), 126-139.

Shimamoto, C. Y., Padial, A. A., da Rosa, C. M., & Marques, M. C. (2018). Restoration of ecosystem services in tropical forests: A global meta-analysis. PloS one, 13(12), e0208523.

Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., ... & Lal, R. (2019). Matching policy and science: Rationale for the ‘4 per 1000-soils for food security and climate’initiative. Soil and Tillage Research, 188, 3-15.

Wang, F., Li, Z., Xia, H., Zou, B., Li, N., Liu, J., & Zhu, W. (2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science & Plant Nutrition, 56(2), 297-306.

Zapfack, L., Noiha, N. V., & Tabue, M. R. B. (2016). Economic estimation of carbon storage and sequestration as ecosystem services of protected areas: a case study of Lobeke National Park. Journal of Tropical Forest Science, 406-415.

Downloads

Published

2024-06-30

How to Cite

Raihan, A. (2024). Enhancing carbon sequestration through tropical forest management: A review. Journal of Forestry and Natural Resources, 3(1), 33-48. Retrieved from https://journals.hu.edu.et/hu-journals/index.php/jfnr/article/view/960