Impact of land-use change on soil microbial communities, organic carbon, and total nitrogen contents in Barkachha,Mirzapur District, India

Authors

  • Weldesemayat Gorems
  • Nandita Ghoshal Banaras Hindu University

DOI:

https://doi.org/10.20372/wf1v0g90

Keywords:

Soil microbial indicators; Ecosystem restoration; Soil nutrient; Bamboo Plan- tation; Degraded forest

Abstract

Land-use change is a major driver of ecosystem degradation, particularly in the dry tropics, where forests are increasingly being converted into agricultural lands. This transformation not only reduces biodiversity and alters ecosystem functions but also significantly impacts soil health. This study assessed the effects of different land-use types, namely, natural forest, de-

graded forest, bamboo plantation, and agricultural land, on soil microbial community com- position and biomass, and soil carbon and nitrogen contents in the dry area of Barkachha, Mirzapur District. A total of 24 composite soil samples were collected from all land use types. Soil organic carbon, total soil nitrogen, microbial biomass, and microbial community com- position were determined by the oxidation and titration method, the micro-Kjeldahl method, the fumigation and extraction method, and FAME GC-MS, respectively. The results of the study showed a significant decline in the microbial community in agricultural and degraded lands compared to natural forest (p<0.001). In agricultural and degraded lands, the microbial community and biomass decreased by 28.8% and 22%, and 54.5% and 50%, respectively. Sim- ilarly, soil organic carbon and total nitrogen contents were markedly lower in converted land uses. Among all land use patterns, the highest organic carbon (0.84±0.054%), total nitrogen (0.123±0.013%), microbial biomass carbon (570.65±35.05µg/g), microbial biomass nitrogen (84.21±3.186µg/g), basal respiration (3.64±0.064µg/g), b-glucosidase (809.68±39.7µgµg PNP g1 dry soil h-1) and microbial community composition were found under natural forest, followed by bamboo plantation, degraded forest, and agricultural land, in decreasing order. Among mi- crobial groups, Gram-negative (G) bacteria and fungi showed similar decreasing trends across the land-use gradient, from natural forest to agricultural land. Conversely, Gram-positive (G+) bacteria showed an increasing trend along the same gradient. The higher microbial and soil chemical properties in the bamboo plantation led to faster ecosystem recovery compared to either agricultural land or degraded lands. Therefore, bamboo plantation could be used for ecosystem recovery and sustaining soil health in response to disturbance, particularly in rela- tion to land-use change in the dry tropics.

References

Adeboye, M. K. A., Bala, A., Osunde, A. O., Uzoma, A. O., Odofin,

A. J., & Lawal, B. A. (2011). Assessment of soil quality using soil organic carbon, total nitrogen, and microbial properties in tropical agro-ecosystems. Agricultural Sci- ences, 2(1), 34–40.

Anderson, T. H., & Domsch, K. H. (1989). Ratio of microbial biomass carbon to total organic carbon in arable soils. Australian Journal of Soil Research, 30(2), 195–207.

Ashagrie, Y., Zech, W., Guggenberger, G., & Mamo, T. (2007). Soil aggregation, and total and particulate organic matter fol- lowing conversion of native forests to continuous cultiva- tion in ethiopia. Soil and Tillage Research, 94(1), 101–108. https://doi.org/10.1016/j.still.2006.07.005

Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzymes activities. Soil Biology and Biochemistry, 31(11), 1471–1479.

Bardgett, R. D., Jones, A. C., Jones, D. L., Kemmitt, S. J., Cook, R., & Hobbs, P. J. (2001). Soil microbial community pat- terns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry, 33(12–13), 1653–1664. https://doi.org/10.1016/s0038-

(01)00086-4

Bashir, O., Ali, T., Baba, Z. A., Rather, G. H., Bangroo, S. A., Mukhtar, S. D., Naik, N., Mohiuddin, R., Bharati, V., & Bhat, R. A. (2021). Soil organic matter and its impact on soil properties and nutrient status. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and biofertilizers, vol. 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 129–159). Springer Interna- tional Publishing. https://doi.org/10.1007/978-3-030- 61010-4_7

Belete, T., & Yadete, E. (2023). Effect of mono cropping on soil health and fertility management for sustainable agricul- ture practices: A review. Journal of Plant Sciences, 11(6), 13–18. https://doi.org/10.11648/j.jps.20231106.13

Bhattacharyya, P., Chakrabarti, K., & Chakraborty, A. (2005). Mi- crobial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere, 60(3), 310–318. https://doi.org/10.1016/j.chemosphere.2004.11.097

Bhuyan, S. I., Tripathi, O. P., & Khan, M. L. (2013). Seasonal changes in soil microbial biomass under different agro- ecosystems of arunachal pradesh, northeast india. The Journal of Agricultural Sciences, 8(3), 142–152.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid ex- traction and purification. Canadian Journal of Biochem- istry and Physiology, 37(8), 911–917.

Bossio, D. A., Girvan, M. S., Verchot, L., Bullimore, J., Borelli, T., Albrecht, A., Scow, K. M., Ball, A. S., Pretty, J. N., & Os- born, A. M. (2005). Soil microbial community response to land use change in an agricultural landscape of western kenya. Microbial Ecology, 49(1), 50–62. https://doi.org/ 10.1007/s00248-003-0209-6

Bossio, D. A., Scow, K. M., Gunapala, N., & Graham, K. J. (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phos- pholipid fatty acid profiles. Microbial Ecology, 36(1), 1–12. https://doi.org/10.1007/s002489900087

Boylen, C. W., & Ensign, J. C. (1970). Intracellular substrates for en- dogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. Jour- nal of Bacteriology, 103(3), 578–587. https://doi.org/10. 1128/jb.103.3.578-587.1970

Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil n: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837– 842.

Chandra, L. R., Gupta, S., Pande, V., & Singh, N. (2016). Impact of forest vegetation on soil characteristics: A correlation be- tween soil biological and physico-chemical properties. 3 Biotech, 6(2), 188. https://doi.org/10.1007/s13205-016- 0510-y

Chaudhary, D. R., Ghose, A., Chikara, J., & Patolia, J. S. (2008). Soil characteristics and mineral nutrient status in wild Ja- tropha populations of india. Communications in Soil Sci- ence and Plant Analysis, 39(9–10), 1476–1485.

Chen, D. D., Zhang, S. H., Dong, S. K., Wang, X. T., & Du, G. Z. (2010). Effect of land use on soil nutrients and microbial biomass of an alpine region on the northeastern tibetan plateau, china. Land Degradation & Development, 21(5), 446–452.

Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C., & Zhang, S. (2013). Soil microbial biomass, basal res- piration and enzyme activity of main forest types in the qinling mountains. PLoS ONE, 8(6), e67353. https://doi. org/10.1371/journal.pone.0067353

Dessie, G., & Kinlund, P. (2008). Khat expansion and forest decline in wondo genet, ethiopia. Geografiska Annaler: Series B, Human Geography, 90(2), 187–203. https://doi.org/10. 1111/j.1468-0467.2008.00286.x

Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosi- dases in soils. Soil Biology and Biochemistry, 20(5), 601– 606. https://doi.org/10.1016/0038-0717(88)90141-1

Emch, M. (2003). The human ecology of mayan cacao farming in belize. Unknown.

Fanin, N., Kardol, P., Farrell, M., Nilsson, M.-C., Gundale, M. J., & Wardle, D. A. (2019). The ratio of gram-positive to gram- negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biology and Biochemistry, 128, 111–114. https://doi.org/10.1016/j.soilbio.2018.10. 010

García-Orenes, F., Morugán-Coronado, A., Zornoza, R., & Scow,

K. (2013). Changes in soil microbial community struc- ture influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS ONE, 8(11), e80522. https://doi.org/10.1371/journal.pone.0080522

Gol, C. (2009). The effects of land use change on soil properties and organic carbon at dagdami river catchment in turkey. Journal of Environmental Biology, 30, 825–830.

Guo, X., Chen, H. Y. H., Meng, M., Biswas, S. R., Ye, L., & Zhang,

J. (2016). Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. Forest Ecology and Management, 373, 93–99. https:

//doi.org/10.1016/j.foreco.2016.03.048

Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantifi- cation of global gross forest cover loss. Proceedings of the National Academy of Sciences, 107(19), 8650–8655. https:

//doi.org/10.1073/pnas.0912668107

Insam, H., Parkinson, D., & Domsch, K. H. (1989). Influence of macroclimate on soil microbial biomass. Soil Biology and Biochemistry, 21(2), 211–221.

Iqbal, A. M., Hossen, S. M., & Islam, N. M. (2014). Soil organic car- bon dynamics for different land uses and soil management practices in mymensingh. Proceedings of 5th International Conference on Environmental Aspects of Bangladesh, 16– 17.

Kabir, Z., O’Halloran, I. P., & Hamel, C. (1999). Combined effects of soil disturbance and fallowing on plant and fungal com- ponents of mycorrhizal corn (Zea mays L.) Soil Biology and Biochemistry, 31(2), 307–314. https : / /doi . org /10 . 1016/S0038-0717(98)00124-2

Kara, O., & Bolat, L. (2008). The effect of different land uses on soil microbial biomass carbon and nitrogen in Bartin province. Turkish Journal of Agriculture and Forestry, 32(4), 281–288.

Keller, N., Anthony, M. A., van der Voort, T. S., Binte Mohamed Ramdzan, K. N., Mills, M. B., Raczka, N. C., & Koh, L. P. (2025). Soil carbon as a blind spot in tropical rainforest restoration. Current Biology, 35(15), R765–R781. https:// doi.org/10.1016/j.cub.2025.05.060

Kong, C. H., Zhao, H., Xu, X. H., Wang, P., & Gu, Y. (2007). Ac-

tivity and allelopathy of soil of flavone o-glycosides from rice. Journal of Agricultural and Food Chemistry, 55(15), 6007–6012. https://doi.org/10.1021/jf0703912

Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S., & Hertel,

D. (2015). Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Global Change Biology. https://doi. org/10.1111/gcb.12979

Kumar, C. M., & Ghoshal, N. (2017). Impact of land-use change on soil microbial community composition and organic car- bon content in the dry tropics. Pedosphere, 27(5), 974– 977. https://doi.org/10.1016/S1002-0160(17)60404-1

Lan, G., Wu, Z., Yang, C., Sun, R., Chen, B., & Zhang, X. (2021). Forest conversion alters the structure and functional pro- cesses of tropical forest soil microbial communities. Land Degradation & Development, 32(2), 613–627. https://doi. org/10.1002/ldr.3757

Lepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of eastern hi- malayas. Ecological Processes, 9(1). https : / /doi . org /10 . 1186/s13717-020-00269-y

Logah, V. h., Safo, E. Y., Quansah, C., & Danso, I. (2010). Soil micro- bial biomass carbon, nitrogen and phosphorus dynamics under different amendments and cropping systems in the semi-deciduous forest zone of ghana. West African Journal of Applied Ecology, 17, 121–133.

Lopes, L. D., Fernandes, M. F., & Cerri, C. E. P. (2013). Soil microbial biomass and enzyme activity under different management systems in tropical agroecosystems. Revista Brasileira de Ciência do Solo, 37(3), 593–602. https://doi. org/10.1590/S0100-06832013000300005

Lopes, L. D., Fernandes, M. F., Paiva, S. R., & Cerri, C. E. P. (2015). Soil quality and enzyme activity under different land-use systems in the brazilian cerrado. Agriculture, Ecosystems

& Environment, 206, 16–25. https://doi.org/10.1016/j. agee.2015.03.009

Makova, J., Javorekova, S., Medo, J., & Majerčíkova, K. (2011). Characteristics of microbial biomass carbon and respi- ration activities in arable soil and pasture grassland soil. Journal of Central European Agriculture, 12, 752–765.

Málaga, N., Hergoualc’h, K., Kapp, G., & Martius, C. (2021). Varia- tion in vegetation and ecosystem carbon stock due to the conversion of disturbed forest to oil palm plantation in pe- ruvian amazonia. Ecosystems, 24(2), 351–369. https://doi. org/10.1007/s10021-020-00521-8

Masciandaro, G., Ceccanti, B., Benedicto, S., Lee, H. C., & Cook,

H. F. (2003). Enzyme activity and c and n pools in soil fol- lowing application of mulches. Canadian Journal of Soil Science, 84, 19–30.

Mazzetto, A. M., Feigl, B. J., Cerri, C. E. P., & Cerri, C. C. (2016). Comparing how land use change impacts soil microbial catabolic respiration in southwestern amazon. Brazilian Journal of Microbiology, 47(1), 63–72. https : / /doi . org / 10.1016/j.bjm.2015.11.025

Mellisse, B. T., Van De Ven, G. W. J., Giller, K. E., & Descheemaeker,

K. (2018). Home garden system dynamics in southern ethiopia. Agroforestry Systems, 92(6), 1579–1595. https:// doi.org/10.1007/s10457-017-0106-5

Mishra, A., Singh, L., Purohit, H. J., Hathi, Z. J., Philip, A., Jessy,

M. D., Uthup, T. K., & Singh, D. (2024). Assessing shifts in soil fungal community structure during the conversion of tropical semi-evergreen forest: Implications for land use management. Environment, Development and Sustainabil- ity. https://doi.org/10.1007/s10668-024-05422-7

Moore-Kucera, J., & Dick, R. P. (2008). PLFA profiling of micro- bial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microbial Ecology, 55(3), 500–511. https://doi.org/10.1007/s00248-007-9295-1

Nagendran, N. A., Deivendran, S., & Prabavathi, S. (2014). Diver- sity of soil microbes under different ecosystem landuse patterns. Journal of Applied & Environmental Microbiol- ogy, 2(4), 90–96. https://doi.org/10.12691/jaem-2-4-1

Oyedele, A. O., Olayungbo, A. A., Denton, O. A., Ogunrewo, O. M., & Momodu, F. O. (2015). Assessment of the microbial biomass carbon, nitrogen, and phosphorus in relation to physico-chemical properties of Acric Luvisols in Ibadan south west, Nigeria. Journal of Agriculture and Environ- ment for International Development (JAEID), 109(2), 179–

https://doi.org/10.12895/jaeid.20152.330 Paltineanu, C., Dumitru, S., Vizitiu, O., Mocanu, V., Lăcătusu,

A.-R., Ion, S., & Domnariu, H. (2024). Soil organic car- bon and total nitrogen stocks related to land use and ba- sic environmental properties − assessment of soil carbon sequestration potential in different ecosystems. CATENA, 246, 108435. https : / /doi . org /10 . 1016 / j . catena . 2024 .

Pereira, J. D. M., Baretta, D., Bini, D., Vasconcellos, R. L. D. F., & Cardoso, E. J. B. N. (2013). Relationships between micro- bial activity and soil physical and chemical properties in native and reforested Araucaria angustifolia forests in the state of São Paulo, Brazil. Revista Brasileira de Ciência Do

Solo, 37(3), 572–586. https : / /doi . org /10 . 1590 /s0100 -

Powers, J. S. (2004). Changes in soil carbon and nitrogen after con- trasting land-use transitions in northeastern Costa Rica. Ecosystems, 7(2). https://doi.org/10.1007/s10021-003-

-2

Roldan, A., Salinas-García, J. R., Alguacil, M. M., Díaz, E., & Car- avaca, F. (2005). Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma, 129, 178–185.

Saha, S. K., Nair, P. K. R., Nair, V. D., & Kumar, B. M. (2010). Car-

bon storage in relation to soil size fractions under tropi- cal tree-based land-use systems. Plant and Soil, 328(1–2), 433–446.

Sarto, M. V. M., Borges, W. L. B., Bassegio, D., Pires, C. A. B., Rice,

C. W., & Rosolem, C. A. (2020). Soil microbial commu- nity, enzyme activity, c and n stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Archives of Microbiology, 202(10), 2809– 2824. https://doi.org/10.1007/s00203-020-01996-8

Singh, D. M., Mukherjee, B., Kumar, C., Singh, A., & Ghoshal, N. (2018). Chapter 8 sustainability in agroecosystems: Man- agement strategies involving herbicides and organic in- puts. In Trends in life science research. Unknown.

Singh, M. K., & Ghoshal, N. (2014). Variation in soil microbial biomass in the dry tropics: Impact of land-use change. Soil Research, 52(3), 299–306. https://doi.org/10.1071/ SR13265

Singh, N. K., & Rai, A. K. (2024). Unraveling the complex dynam- ics of soil microbiome diversity and its implications for ecosystem functioning: A comprehensive review. Microbi- ology Research Journal International, 34(3), 17–47. https:

//doi.org/10.9734/mrji/2024/v34i31434

Singh, S., Dixit, B., Singh, A., Prajapati, L., Chandrakar, S., & Tam- rakar, A. (2025). Integrating seasonal dynamics and hu- man impact on microbial biomass carbon across deep soil profiles in tropical Sal forest of Achanakmar-Amarkantak biosphere reserve, india. Scientific Reports, 15(1). https :

//doi.org/10.1038/s41598-025-01160-6 Singh, S., & Ghoshal, N. (2006). Effect of cultivation on major phys-

ical and chemical properties of soil. Plant Archives, 6, 611– 613.

Solomon, D., Fritzsche, F., Lehmann, J., Tekalign, M., & Zech, W. (2002). Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands. Soil Science Society of America Journal, 66(3), 969. https://doi.org/ 10.2136/sssaj2002.0969

Srivastava, S. C., & Singh, J. S. (1991). Microbial c, n and p in dry tropical forest soils: Effects of alternate land uses and nu- trient flux. Soil Biology and Biochemistry, 23, 117–124.

Steenwerth, K. L., Jackson, L. E., Calderon, F. J., Stromberg, M. R., & Scow, K. M. (n.d.). Soil microbial community compo- sition and land use history in cultivated and grassland ecosystems of coastal California.

Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Mi- crobiology, 5(3), 240–245. https://doi.org/10.1016/s1369- 5274(02)00324-7

Tripathi, N., & Singh, R. S. (2009). Influence of different land uses on soil nitrogen transformations after conversion from an indian dry tropical forest. Catena, 77, 216–223.

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extrac- tion method for measuring soil microbial biomass carbon. Soil Biology and Biochemistry, 19(6), 703–707.

Wang, X., Chen, Q., Li, Z., Yin, W., & Ma, D. (2025). The ef- fects of long-term land use changes on bacterial commu- nity structure and soil physicochemical properties in the northeast Mollisol region of china. Agronomy, 15(5), 1132. https://doi.org/10.3390/agronomy15051132

Willers, C., Jansen Van Rensburg, P. J., & Claassens, S. (2015). Phos- pholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology, 119(5), 1207–1218. https://doi. org/10.1111/jam.12902

Wuletaw, M. (2018). Public discourse on Khat (Catha edulis) pro- duction in Ethiopia: Review. Journal of Agricultural Ex- tension and Rural Development, 10(10), 192–201. https :

//doi.org/10.5897/JAERD2018.0984

Xiangmin, F., Qingli, W., Wangming, Z., Wei, Z., Yawei, W., Li- jun, N., & Limin, D. (2014). Land use effects on soil or- ganic carbon, microbial biomass and microbial activity in changbai mountains of northeast china. Chinese Geo- graphical Science, 24, 297–306.

Yang, K., Zhu, J., Zhang, M., Yan, Q., & Sun, O. J. (2010). Soil mi- crobial biomass carbon and nitrogen in forest ecosystems of northeast china: A comparison between natural sec- ondary forest and larch plantation. Journal of Plant Ecol- ogy, 3, 175–182.

Zhang, J., Zhang, J., & Yang, L. (2020). A long-term effect of Larix monocultures on soil physicochemical properties and mi- crobes in northeast china. European Journal of Soil Biol- ogy, 96, 103149. https://doi.org/10.1016/j.ejsobi.2019.

Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., & Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports, 6(1). https://doi.org/10.1038/srep36587

Zhou, J. Z., Xia, B. C., & Treves, D. S. (2002). Spatial and resource factors influencing high microbial diversity in soil. Ap- plied and Environmental Microbiology, 68, 326–334.

Downloads

Published

2026-01-16

How to Cite

Gorems, W. ., & Ghoshal, N. (2026). Impact of land-use change on soil microbial communities, organic carbon, and total nitrogen contents in Barkachha,Mirzapur District, India. Journal of Forestry and Natural Resources, 4(2), 1-12. https://doi.org/10.20372/wf1v0g90

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.